so sánh 1/1x2+1/2x3+...+49/50 và 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/1.2+1/2.3+1/3.4+...+1/59.60
=1-1/2+1/2-1/3+1/3-1/4+...+1/59-1/60
=1-1/60
=59/60
vì 1>59/60
=> 1>1/1.2+1/2.3+1/3.4+...+1/59.60
chúc bạn học tốt nha
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{59.60}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{59}-\frac{1}{60}\)
\(=1-\frac{1}{60}=\frac{59}{60}\)
Câu 1: So sánh Biểu thức 1: ( 𝑎 + 1 ) ( 𝑎 + 2 ) ( 𝑎 + 3 ) − 𝑎 ( 𝑎 + 1 ) ( 𝑎 + 2 ) (a+1)(a+2)(a+3)−a(a+1)(a+2) Biểu thức 2: 3 ( 𝑎 + 1 ) ( 𝑎 + 2 ) 3(a+1)(a+2) Bước 1: Rút gọn biểu thức 1: ( 𝑎 + 1 ) ( 𝑎 + 2 ) ( 𝑎 + 3 ) − 𝑎 ( 𝑎 + 1 ) ( 𝑎 + 2 ) (a+1)(a+2)(a+3)−a(a+1)(a+2) Ta có thể khai triển từng phần: ( 𝑎 + 1 ) ( 𝑎 + 2 ) ( 𝑎 + 3 ) = ( 𝑎 + 1 ) ( 𝑎 2 + 5 𝑎 + 6 ) = 𝑎 3 + 6 𝑎 2 + 11 𝑎 + 6 (a+1)(a+2)(a+3)=(a+1)(a 2 +5a+6)=a 3 +6a 2 +11a+6 𝑎 ( 𝑎 + 1 ) ( 𝑎 + 2 ) = 𝑎 ( 𝑎 2 + 3 𝑎 + 2 ) = 𝑎 3 + 3 𝑎 2 + 2 𝑎 a(a+1)(a+2)=a(a 2 +3a+2)=a 3 +3a 2 +2a Vậy biểu thức 1 trở thành: ( 𝑎 3 + 6 𝑎 2 + 11 𝑎 + 6 ) − ( 𝑎 3 + 3 𝑎 2 + 2 𝑎 ) = 3 𝑎 2 + 9 𝑎 + 6 (a 3 +6a 2 +11a+6)−(a 3 +3a 2 +2a)=3a 2 +9a+6 Biểu thức 2: 3 ( 𝑎 + 1 ) ( 𝑎 + 2 ) = 3 ( 𝑎 2 + 3 𝑎 + 2 ) = 3 𝑎 2 + 9 𝑎 + 6 3(a+1)(a+2)=3(a 2 +3a+2)=3a 2 +9a+6 Như vậy, biểu thức 1 và biểu thức 2 đều có giá trị bằng nhau. Do đó, cả hai biểu thức bằng nhau. Câu 2: Tính M Biểu thức: 𝑀 = 1 × 2 + 2 × 3 + 3 × 4 + ⋯ + 2002 × 2003 M=1×2+2×3+3×4+⋯+2002×2003 Bước 1: Viết lại tổng: 𝑀 = ∑ 𝑘 = 1 2002 𝑘 ( 𝑘 + 1 ) M= k=1 ∑ 2002 k(k+1) Bước 2: Rút gọn 𝑘 ( 𝑘 + 1 ) k(k+1): 𝑘 ( 𝑘 + 1 ) = 𝑘 2 + 𝑘 k(k+1)=k 2 +k Do đó: 𝑀 = ∑ 𝑘 = 1 2002 ( 𝑘 2 + 𝑘 ) = ∑ 𝑘 = 1 2002 𝑘 2 + ∑ 𝑘 = 1 2002 𝑘 M= k=1 ∑ 2002 (k 2 +k)= k=1 ∑ 2002 k 2 + k=1 ∑ 2002 k Bước 3: Tính từng tổng: Tổng ∑ 𝑘 = 1 2002 𝑘 2 ∑ k=1 2002 k 2 là tổng bình phương của các số tự nhiên, có công thức: ∑ 𝑘 = 1 𝑛 𝑘 2 = 𝑛 ( 𝑛 + 1 ) ( 2 𝑛 + 1 ) 6 k=1 ∑ n k 2 = 6 n(n+1)(2n+1) Áp dụng với 𝑛 = 2002 n=2002: ∑ 𝑘 = 1 2002 𝑘 2 = 2002 ( 2002 + 1 ) ( 2 × 2002 + 1 ) 6 = 2002 × 2003 × 4005 6 k=1 ∑ 2002 k 2 = 6 2002(2002+1)(2×2002+1) = 6 2002×2003×4005 Tổng ∑ 𝑘 = 1 2002 𝑘 ∑ k=1 2002 k là tổng các số tự nhiên, có công thức: ∑ 𝑘 = 1 𝑛 𝑘 = 𝑛 ( 𝑛 + 1 ) 2 k=1 ∑ n k= 2 n(n+1) Áp dụng với 𝑛 = 2002 n=2002: ∑ 𝑘 = 1 2002 𝑘 = 2002 ( 2002 + 1 ) 2 = 2002 × 2003 2 k=1 ∑ 2002 k= 2 2002(2002+1) = 2 2002×2003 Bước 4: Tính tổng 𝑀 M: 𝑀 = 2002 × 2003 × 4005 6 + 2002 × 2003 2 M= 6 2002×2003×4005 + 2 2002×2003 Rút gọn biểu thức: 𝑀 = 2002 × 2003 ( 4005 6 + 1 2 ) M=2002×2003( 6 4005 + 2 1 ) Tính phần trong dấu ngoặc: 4005 6 + 1 2 = 4005 + 3 6 = 4008 6 = 668 6 4005 + 2 1 = 6 4005+3 = 6 4008 =668 Vậy: 𝑀 = 2002 × 2003 × 668 M=2002×2003×668 Đây là kết quả của phép tính 𝑀 M.
A = 1.2 + 2.3 + 3.4 + ... + 2017.2018
⇒ 3A = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 2017.218.(2019 - 2016)
= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 2017.2018.2019 - 2016.2017.2018
= 2017.2018.2019
= 2017.2018.2019
B = 2018³/3 ⇒ 3B = 2018³
Ta có:
2017.2019 = (2018 - 1).(2018 + 1)
= 2018² - 1²
= 2018.2018 - 1 < 2018.2018
⇒ 2017.2018.2019 < 2018.2018.2018
⇒ 3A < 3B
⇒ A < B
S= 2x(1/1x2+1/2x3+1/3x4+...........+1/2020x2021)
S=2x(1-1/2+1/2-1/3+1/3-...+1/2020-1/2021)
S=2x(1-1/2021)
S=2x2020/2021
S=4040/2021
2019/2010<3/2<4040/2021
=>2019/2010<S
S = 2 x (\(\frac{2}{1\times2}+\frac{2}{2\times3}+\frac{2}{3\times4}+...+\)\(\frac{2}{2020\times2021}\))
= 2 x (\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\)\(\frac{1}{2020\times2021}\))
= 2 x ( \(1-\frac{1}{2021}\))
= \(2\times\frac{2020}{2021}\)
= \(\frac{4040}{2021}\)
= \(\frac{4042-2}{2021}\)
\(=2-\frac{2}{2021}\)
Ta có :
\(\frac{2019}{2010}=\frac{2020-1}{2010}=2-\frac{1}{2010}=2-\frac{2}{2020}\)
Ta thấy \(\frac{2}{2021}< \frac{2}{2020}\)
nên \(2-\frac{2}{2021}>2-\frac{2}{2020}\)
Vậy \(S\)\(>\frac{2019}{2010}\)
\(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+....+\dfrac{1}{24\times25}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{24}-\dfrac{1}{25}\)
\(=1-\dfrac{1}{25}\)
\(=\dfrac{24}{25}\)
Trả lời
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{49\cdot50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}\)
\(\Rightarrow\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{49\cdot50}< 1\)
Vậy \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{49\cdot50}< 1\left(đpcm\right)\)
1-1/50=49/50<1