cho các số dương x,y thỏa mãn \(x-y=x^3+y^3\) chứng minh rằng \(x^2+y^2< 1\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
DH
1
14 tháng 2 2020
Hình như đây là đề thi vào 10 chuyên năng khiếu thành phố hồ chí minh năm 2013-2014 thì phải
TT
0
TT
0
\(x^2+y^2< 1\Leftrightarrow\left(x-y\right)\left(x^2+y^2\right)< x^3+y^3\) (Vì \(x-y=x^3+y^3\))
\(\Leftrightarrow x^3+y^3>x^3-y^3+xy^2-x^2y\)
\(\Leftrightarrow2y^3-xy^2+x^2y>0\)
\(\Leftrightarrow y\left(2y^2+x^2-xy\right)>0\)
BĐT cuối luôn đúng theo AM-GM và x,y dương
Vậy ta có ĐPCM
nếu để (x-y)(x2 + y^2) < x3+y3 thì ngkhac đổi VP sang VT thì khi đó chẳng phải VT<0 đk ạ? lmsao để chứng minh cách này đúng?