Tìm giá trị lớn nhất của biểu thức
\(\frac{1}{\text{ (x-2)^2 + 8}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt Cauchy ta có :
\(x^4+1\ge2\sqrt{x^4}=2x^2\)
Khi đó : \(\frac{x^2}{x^4+1}\le\frac{x^2}{2x^2}=\frac{1}{2}\)
Hay \(B\le\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=\pm1\)
A chỉ có giá trị lớn nhất khi |x+1|=0 =>x=-1
Ta có : A=15|x+1|+32/6|x+1|=15|-1+1|+32/6|-1+1|+8=32/4=4
Vậy giá trị lớn nhất của biểu thức A là 4
1,\(\left|x-0,4\right|\ge0\Rightarrow\left|x-0,4\right|+9\ge0+9=9\)
Nên GTNN của \(A\) là \(9\) đạt được khi \(x-0,4=0\Rightarrow x=0,4\)
2,\(\left|x+3\right|\ge0\Rightarrow-\left|x+3\right|\le0\Rightarrow\frac{1}{8}-\left|x+3\right|\le\frac{1}{8}-0=\frac{1}{8}\)
Nên GTLN của \(B\) là \(\frac{1}{8}\) đạt được khi \(x+3=0\Rightarrow x=-3\)
1.
\(A=\left|x-0,4\right|+9\)
Vì \(\left|x-0,4\right|\ge0\Rightarrow\left|x-0,4\right|+9\ge9\)
Vậy GTNN của A là 9 khi x = 0,4
2.
\(B=\frac{1}{8}-\left|x+3\right|\)
Vì \(\left|x+3\right|\ge0\Rightarrow\frac{1}{8}-\left|x+3\right|\le\frac{1}{8}\)
Vậy GTLN của B là \(\frac{1}{8}\)khi x = -3
a, ĐK: \(\hept{\begin{cases}x+2\ne0\\x\ne0\end{cases}\Rightarrow}\hept{\begin{cases}x\ne-2\\x\ne0\end{cases}}\)
b, \(B=\left(1-\frac{x^2}{x+2}\right).\frac{x^2+4x+4}{x}-\frac{x^2+6x+4}{x}\)
\(=\frac{-x^2+x+2}{x+2}.\frac{\left(x+2\right)^2}{x}-\frac{x^2+6x+4}{x}\)
\(=\frac{\left(-x^2+x+2\right)\left(x+2\right)-\left(x^2+6x+4\right)}{x}\)
\(=\frac{-x^3-2x^2+x^2+2x+2x+4-\left(x^2+6x+4\right)}{x}\)
\(=\frac{-x^3-2x^2-2x}{x}=-x^2-2x-2\)
c, x = -3 thỏa mãn ĐKXĐ của B nên với x = -3 thì
\(B=-\left(-3\right)^2-2.\left(-3\right)-2=-9+6-2=-5\)
d, \(B=-x^2-2x-2=-\left(x^2+2x+1\right)-1=-\left(x+1\right)^2-1\le-1\forall x\)
Dấu "=" xảy ra khi \(x+1=0\Rightarrow x=-1\)
Vậy GTLN của B là - 1 khi x = -1
Đặt A=|x+5|+|x+2|+|x-7|+|x-8|
TH1: x<-5
=>x+5<0; x+2<0; x-7<0; x-8<0
=>A=-x-5-x-2-x+7-x+8=-4x+8
Vì A=-4x+8 là hàm số nghịch biến trên R
nên A nhỏ nhất khi x lớn nhất
Khi x<-5 thì x sẽ không có giá trị lớn nhất
=>A không có giá trị nhỏ nhất
TH2: -5<=x<-2
=>x+5>=0; x+2<0; x-7<0; x-8<0
=>A=x+5-x-2-x+7-x+8=-2x+18
Vì A=-2x+18 là hàm số nghịch biến trên R
nên A nhỏ nhất khi x lớn nhất
Khi -5<=x<-2 thì x sẽ không có giá trị lớn nhất
=>A không có giá trị nhỏ nhất
TH3: -2<=x<7
=>x+5>0; x+2>=0; x-7<0; x-8<0
=>A=x+5+x+2-x+7-x+8=22
=>\(A_{\min}=22\) khi -2<=x<7(1)
TH4: 7<=x<8
=>x+5>0; x+2>0; x-7>=0; x-8<0
=>A=x+5+x+2+x-7+8-x=2x+8
Vì A=2x+8 là hàm số đồng biến trên R
nên A nhỏ nhất khi x nhỏ nhất
Với 7<=x<8 thì \(x_{\min}=7\)
=>\(A_{\min}=2\cdot7+8=14+8=22\) (2)
TH5: x>=8
=>x+5>0; x+2>0; x-7>0; x-8>=0
=>A=x+5+x+2+x-7+x-8=4x-8
Vì hàm số A=4x-8 là hàm số đồng biến trên R
nên A nhỏ nhất khi x nhỏ nhất
Khi x>=8 thì \(x_{\min}=8\)
=>\(A_{\min}=4\cdot8-8=32-8=24\) (3)
Từ (1),(2),(3) suy ra \(A_{\min}=22\) khi -2<=x<=7
\(M=\frac{44}{\left|x+5\right|+\left|x+2\right|+\left|x-7\right|+\left|x-8\right|}\)
=>\(M=\frac{44}{A}\le\frac{44}{22}=2\forall x\)
Dấu '=' xảy ra khi -2<=x<=7
1 )Vì \(\left(x+2\right)^2\ge0;\left(y-3\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2+1\ge1\)
Dấu "=: xảy ra <=> \(\orbr{\begin{cases}\left(x+2\right)^2=0\\\left(y-3\right)^2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\y=3\end{cases}}}\)
Vậy ........
2 ) \(\frac{1}{\left(x-2\right)^2+2}\ge\frac{1}{2}\)
Dấu "=" xảy ra <=> x = 2
Vậy ..........
Để \(\frac{1}{\left(x-2\right)^2+8}\) đạt giá trị lớn nhất
mà (x-2)^2 + 8 >= 0; 8 > 0 => (x-2)^2 + 8 >0
=> (x - 2 ) ^2 + 8 = 8
(x-2) ^2 = 0
x -2 = 0
x = 2
KL:x = 2 để 1/(x-2)^2+ 8 đạt giá trị lớn nhất ( giá trị lớn nhất của 1/(x-2)^2+8 = 1/8 )