Cmr da thuc sau ko co ngiem
B=(x-5)^2+4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) = x(x-1) +1
x(x-1) = 0 khi x = 0; x=1
còn lại x(x - 1) luôn >0
vậy A(x) >0 với mọi x
b) A(x) vô nghiệm vì A(x) luôn .> 0 (cmt)
Ta có:\(x^4\)≥0 với mọi x
⇒2\(x^4\)≥0 với mọi x
Tương tự 4\(x^2\)≥0 với mọi x
⇒M≥0+0+6 với mọi x
⇒Đa thức M không có nghiệm
Đặt \(f\left(x\right)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0\)\(\left(a_i\in Z\right)\)
Ta có: \(f\left(15\right)=a_n.15^n+a_{n-1}.15^{n-1}+...+a_1.15+a_0=9\)
\(f\left(7\right)=a_n.7^n+...+a_1.7+a_0=5\)
\(\Rightarrow\left(15^n-7^n\right)a_n+\left(15^{n-1}-7^{n-1}\right).a_{n-1}+...+\left(15-7\right)a_1=9-5\)
Mà \(15^k-7^k=\left(15-7\right)\left(15^{k-1}+15^{k-2}.7+...+15^i.7^{k-1-i}+..+15.7^{k-2}+7^{k-1}\right)=8X_k\)
\(\left(X_K\in Z\right)\)
\(\Rightarrow8X_n.a_n+8X_{n-1}.a_{n-1}+...+8a_1=4\)
\(\Rightarrow X_na_n+X_{n-1}a_{n-1}+...+X_1a_1=\frac{1}{2}\text{ (vô lí do }X_k,\text{ }a_k\in Z\text{)}\)
Vậy không tồn tại đa thức hệ số nguyên thỏa f(7) = 5; f(15) = 9.
(x-5)^2+4=0
(x-5)^2=0-4
(x-5)^2=-4
x-5=\(\pm\sqrt{-4}\) (Vô lý)
Suy ra (x-5)^2+4 vô nghiệm
ta có (x-5)^2>hoặc =0
vậy (x-5)^2 +4 >0
vậy đa thức trên ko có nghiệm