cho x và y>0 và x+y=xy tìm min S=x+y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
\(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)
Dấu "=" <=> x= y = 1/2
\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)
\(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)
Dấu "=" <=> x = 3y
Áp dụng bất đẳng thức cosi ta có:
`x+y>=2\sqrt{xy}`
Mà `x+y=xy`
`=>xy>=2\sqrt{xy}`
`x,y>0=>xy>0` chia hai vế cho `2sqrt{xy}>0` ta có:
`\sqrt{xy}>=2`
`<=>xy>=4`
`=>S>=4`
Dấu "=" xảy ra khi `x=y=2`
ta có: S = x+y
=> S=( x+2)+(y+2) - 4
AD BDDT cô-si ta có: \(\left(x+2\right)+\left(y+2\right)\ge2\sqrt{\left(x+2\right).\left(y+2\right)}=2.3=6\)
=> \(S\ge2\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+2=y+2\\\left(x+2\right).\left(y+2\right)=9\end{cases}\Leftrightarrow x=y=1}\)( TM đk x>0; y>0)
KL: MinS = 2 tại x=y=1
xy(x-y)2=(x+y)2 ĐK:x>y
(x+y)2=[(x+y)2-4xy]xy
(x+y)2(xy-1)=4x2y2
\(\frac{1}{\left(x+y\right)^2}=\frac{xy-1}{4x^2y^2}=\frac{1}{4}\left(\frac{1}{xy}-\frac{1}{x^2y^2}\right)\)
\(\frac{1}{\left(x+y\right)^2}=\left[-\left(\frac{1}{xy}-\frac{1}{2}\right)^2+\frac{1}{4}\right]\le\frac{1}{16}\)
=> \(x+y\ge4\)
Dấu "=" xảy ra khi \(x=2+\sqrt{2}\),\(y=2-\sqrt{2}\)
Ta có :
\(K=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)(1)
Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}>=\frac{4}{a+b}\)( "=" khi a=b ) , ta có :
\(\frac{1}{x^2+y^2}+\frac{1}{2xy}>=\frac{4}{x^2+2xy+y^2}\)
\(\Rightarrow\frac{1}{x^2+y^2}+\frac{1}{2xy}>=\frac{4}{\left(x+y\right)^2}=\frac{4}{1^2}=4\) (2)
Lại có : \(\left(x-y\right)^2>=0\) ("=" khi x=y )
\(\Leftrightarrow x^2-2xy+y^2>=0\)
\(\Leftrightarrow x^2+y^2>=2xy\)
\(\Leftrightarrow x^2+y^2+2xy>=4xy\)
\(\Leftrightarrow\left(x+y\right)^2>=4xy\)
\(\Leftrightarrow1>=4xy\)
\(\Leftrightarrow2xy< =\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{2xy}>=2\) (3)
Từ (1) , (2) và (3) , suy ra : \(K>=4+2=6\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x^2+y^2=2xy\\x=y\\x+y=1\end{cases}}\)
\(\Rightarrow x=y=\frac{1}{2}\)
Vậy Min\(K=6\)khi \(x=y=\frac{1}{2}\)
Ta có: \(x+y=xy\Leftrightarrow\frac{1}{x}+\frac{1}{y}=1\)
Mà \(\frac{1}{x}+\frac{1}{y}\ge\frac{\left(1+1\right)^2}{x+y}=\frac{4}{x+y}\)
\(\Rightarrow\frac{4}{x+y}\le1\Rightarrow x+y\ge4\)
Dấu "=" xảy ra khi: \(x=y=2\)