giải phương trình
3|x+3|-3x=-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3, đk : x =< 3/5
TH1 : \(x-2=3-5x\Leftrightarrow6x=5\Leftrightarrow x=\dfrac{5}{6}\)(ktm)
TH2 : \(x-2=5x-3\Leftrightarrow4x=1\Leftrightarrow x=\dfrac{1}{4}\)(tm)
4, \(\Leftrightarrow8x-14=3x+21\Leftrightarrow5x=35\Leftrightarrow x=7\)
Bài 3:
\(\Leftrightarrow x-2=3-5x\\ \Leftrightarrow x+5x=3+2\\ \Leftrightarrow6x=5\\ \Leftrightarrow x=\dfrac{5}{6}\)
Vậy \(x=\dfrac{5}{6}\)
Bài 4:
\(\Leftrightarrow8x-14=3x+3+18\)
\(\Leftrightarrow8x-3x=3+18+14\\ \Leftrightarrow5x=35\\ \Leftrightarrow x=\dfrac{35}{5}=7\)
Vậy x = 7
$\begin{cases}3(x-1)+2(y-3)=-5\\(x+y-1)^2=(x+y)^2\\\end{cases}$
`<=>` $\begin{cases}3x-3+2y-6=-5\\(x+y-x-y+1)(x+y+x+y-1)=0\\\end{cases}$
`<=>` $\begin{cases}3x+2y=4\\1.(2x+2y-1)=0\\\end{cases}$
`<=>` $\begin{cases}3x+2y=4\\2x+2y=1\\\end{cases}$
`<=>` $\begin{cases}3x-2x=4-1=3\\2y=1-2x\\\end{cases}$
`<=>` $\begin{cases}x=3\\y=\dfrac{1-2x}{2}=-\dfrac52\\\end{cases}$
Vậy HPT có nghiệm `x,y=(3,-5/2)`
\(3,x^3-4x=0\)
\(x\left(x^2-4\right)=0\)
\(\left(x-2\right)x\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=0\\x=2\end{matrix}\right.\)
\(4,4x-3\left(x-2\right)=7-x\)
\(4x-3x+6=7-x\)
\(x+6=7-x\)
\(2x=1\)
\(x=\dfrac{1}{2}\)
\(3\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
4 \(\Leftrightarrow4x-3x+6-7+x=0\Leftrightarrow x=\dfrac{1}{2}\)
a: 3(x+7)-2x+5>0
=>3x+21-2x+5>0
=>x+26>0
=>x>-26
Sửa đề: \(\dfrac{x+2}{18}-\dfrac{x+3}{8}< \dfrac{x-1}{9}-\dfrac{x-4}{24}\)
=>\(\dfrac{4\left(x+2\right)}{72}-\dfrac{9\left(x+3\right)}{72}< \dfrac{8\left(x-1\right)}{72}< \dfrac{3\left(x-4\right)}{72}\)
=>\(4\left(x+2\right)-9\left(x+3\right)< 8\left(x-1\right)-3\left(x-4\right)\)
=>\(4x+8-9x-27< 8x-8-3x+12\)
=>-5x-19<5x+4
=>-10x<23
=>\(x>-\dfrac{23}{10}\)
b: \(3x+2+\left|x+5\right|=0\left(1\right)\)
TH1: x>=-5
(1) trở thành: 3x+2+x+5=0
=>4x+7=0
=>\(x=-\dfrac{7}{4}\left(nhận\right)\)
TH2: x<-5
=>x+5<0
=>|x+5|=-x-5
Phương trình (1) sẽ trở thành:
\(3x+2-x-5=0\)
=>2x-3=0
=>2x=3
=>\(x=\dfrac{3}{2}\)
PT \(\Leftrightarrow9x^2-6x+1-9x+6=9x^2-18x-27\)
\(\Leftrightarrow9x^2-6x+1-9x+6-9x^2+18x+27=0\)
\(\Leftrightarrow3x+34=0\)
\(\Leftrightarrow x=-\dfrac{34}{3}\)
Vậy ...
Ta có: \(\left(3x-1\right)^2-3\left(3x-2\right)=9\left(x+1\right)\left(x-3\right)\)
\(\Leftrightarrow9x^2-6x+1-9x+6=9\left(x^2-3x+x-3\right)\)
\(\Leftrightarrow9x^2-15x+7=9x^2-18x-27\)
\(\Leftrightarrow9x^2-15x+7-9x^2+18x+27=0\)
\(\Leftrightarrow3x+34=0\)
\(\Leftrightarrow3x=-34\)
\(\Leftrightarrow x=-\dfrac{34}{3}\)
Vậy: \(S=\left\{-\dfrac{34}{3}\right\}\)
1/ ( x-3) 2=16
\(\Rightarrow\left[{}\begin{matrix}x-3=4\\x-3=-4\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=7\\x=-1\end{matrix}\right.\)
2/ (3x-1)3=8
\(\Rightarrow3x-1=2\\ \Rightarrow3x=3\\ \Rightarrow x=1\)
3/ (x-11)3=-27
\(\Rightarrow x-11=-3\\ \Rightarrow x=8\)
phần 4 mình ko rõ đề
\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)
\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)
\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)
\(\Leftrightarrow x^2-9-x^2+3x=0\)
\(\Leftrightarrow3x-9=0\)
\(\Leftrightarrow3x=9\)
\(\Leftrightarrow x=3\left(n\right)\)
Vậy \(S=\left\{3\right\}\)
\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)
\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)
\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)
\(\Leftrightarrow12x-9-12x+20+2x-7>0\)
\(\Leftrightarrow2x+4>0\)
\(\Leftrightarrow2x>-4\)
\(\Leftrightarrow x>-2\)
Ta có bảng xét dấu :
+) Nếu \(x< -3\Leftrightarrow|x+3|=-x-3\)
\(pt\Leftrightarrow3\left(-x-3\right)-3x=-1\)
\(\Leftrightarrow-3x-9-3x=-1\)
\(\Leftrightarrow-6x=8\)
\(x=\frac{-4}{3}\) ( loại )
+) Nếu \(x\ge-3\Leftrightarrow|x+3|=x+3\)
\(pt\Leftrightarrow3\left(x+3\right)-3x=-1\)
\(\Leftrightarrow3x+9-3x=-1\)
\(\Leftrightarrow9=-1\) ( vô lí )
Vậy phương trình vô nghiệm