Cho A= x(1-x2)2 / 1 + x2 : { [(1-x3 / 1-x )+ x].[1+x3 / 1+x] - x}
Rút gọn A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 4:
\(=\dfrac{a\left(a-b\right)-c\left(a-b\right)}{a\left(a+b\right)-c\left(a+b\right)}=\dfrac{a-b}{a+b}\)
\(A=6x^2+23x+21-\left(6x^2+23x-55\right)=76\\ B=x^4+x^3-x^2-2x^2-2x+2-x^4-x^3+3x^2+2x\\ =2\\ C=x^4+x^3-3x^2-2x-\left(x^4+x^3-x^2-2x^2-2x+2\right)\\ =-2\)
a: (1-2x)^3-(1+2x)^3
\(=1^3-3\cdot1^2\cdot2x+3\cdot1\cdot\left(2x\right)^2-8x^3-8x^3-12x^2-6x-1\)
\(=1-6x+12x^2-8x^3-8x^3-12x^2-6x-1\)
\(=-16x^3-12x\)
b: \(=x^3-6x^2+12x-8-x^3-x^2+8\)
\(=-7x^2+12x\)
c: \(=x^3+8-12x+6x^2-x^3+6x^2+12x\)
\(=12x^2+8\)
\(A=\dfrac{x^2-2x-3-x^2+x-1+4x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{3x}{\left(x+1\right)\left(x^2+x+1\right)}\)
a) \(A=\left(x+2\right)\left(x^2-2x+4\right)-x^3+2\)
\(A=x^3+8-x^3+2\)
\(A=10\)
b) \(B=\left(x-1\right)\left(x^2+x+1\right)-\left(x+1\right)\left(x^2-x+1\right)\)
\(B=x^3-1-\left(x^3+1\right)\)
\(B=x^3-1-x^3-1\)
\(B=-2\)
c) \(C=\left(2x-y\right)\left(4x^2+2xy+y^2\right)+\left(y-3x\right)\left(y^2+3xy+9x^2\right)\)
\(C=\left(2x\right)^3-y^3+y^3-\left(3x\right)^3\)
\(C=8x^3-y^3+y^3-27x^3\)
\(C=-19x^3\)
a)
\(A=\left(x+2\right)\left(x-2\right)\left(x-2\right)-x^3+2\\ =\left(x^2-4\right)\left(x-2\right)-x^3+2\\ =x^3-2x^2-4x+8-x^3+2\\ =-2x^2-4x+10\)
b)
\(B=x^3-1-\left(x^3+1\right)\\ =x^3-1-x^3-1\\ =-2\)
c)
\(C=\left(2x\right)^3-y^3+\left(y\right)^3-\left(3x\right)^3\\ =8x^3-y^3+y^3-27x^3\\ =-19x^3\)
a) A = (x - 3)(x² + 3x + 9) - (x³ + 3)
= x³ - 3³ - x³ - 3
= (x³ - x³) + (-27 - 3)
= -30
b) B = (2x + 1)(4x² - 2x + 1) - 8(x + 1/2)(x² - 1/2 x + 1/4)
= (2x)³ + 1³ - 8[x³ + (1/2)³]
= 8x³ + 1 - 8(x³ + 1/8)
= 8x³ + 1 - 8x³ - 1
= (8x³ - 8x³) + (1 - 1)
= 0
a) \(\left(x^5+4x^3-6x^2\right):4x^2\)
\(=\left(x^5:4x^2\right)+\left(4x^3:4x^2\right)+\left(-6x^2:4x^2\right)\)
\(=\dfrac{1}{4}x^3+x-\dfrac{3}{2}\)
b) x^3 + x^2 - 12 x-2 x^3 - 2x^2 3x^2 - 12 3x^2 - 6x 6x - 12 x^2+3x+6 6x - 12 0
Vậy \(\left(x^3+x^2-12\right):\left(x-2\right)=x^2+3x+6\)
c) (-2x5 : 2x2) + (3x2 : 2x2) + (-4x^3 : 2x^2)
= \(-x^3+\dfrac{3}{2}-2x\)
d) \(\left(x^3-64\right):\left(x^2+4x+16\right)\)
\(=\left(x-4\right)\left(x^2+4x+16\right):\left(x^2+4x+16\right)\)
\(=x-4\)
(dùng hẳng đẳng thức thứ 7)
Bài 2 :
a) 3x(x - 2) - 5x(1 - x) - 8(x2 - 3)
= 3x2 - 6x - 5x + 5x2 - 8x2 + 24
= (3x2 + 5x2 - 8x2) + (-6x - 5x) + 24
= -11x + 24
b) (x - y)(x2 + xy + y2) + 2y3
= x3 - y3 + 2y3
= x3 + y3
c) (x - y)2 + (x + y)2 - 2(x - y)(x + y)
= (x - y)2 - 2(x - y)(x + y) + (x + y)2
= [(x - y) + x + y)2 = [x - y + x + y] = (2x)2 = 4x2
Bài 1 :
a]= \(\frac{1}{4}\)x3 + x - \(\frac{3}{2}\).
b] => [x3 + x2 -12 ] = [ x2 +3 ][x-2] + [-6]
c]= -x3 -2x +\(\frac{3}{2}\).
d] = [ x3 - 64 ] = [ x2 + 4x + 16][ x- 4].
1: \(=\dfrac{x-1}{x^2+x+1}+\dfrac{x+1}{x-1}\)
\(=\dfrac{x^2-2x+1+x^3+x^2+x^2+x+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^3+3x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}\)
2: \(=\dfrac{\left(x^2-y^2\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}=\dfrac{\left(x-y\right)\left(x+y\right)^2}{x^2+xy+y^2}\)
1 + x2 là mẫu số của phân số thứ nhất nha
\(A=\frac{x\left(1-x^2\right)^2}{1+x^2}:\left[\left(\frac{1-x^3}{1-x}\right)+x\right]\left[\left(\frac{1+x^3}{1+x}-x\right)\right]\)
\(A=\frac{x\left(1-x\right)^2.\left(1+x\right)^2}{1+x^2}:\left\{\left[\frac{\left(1-x\right)\left(1+x+x^2\right)}{1-x}+x\right].\left[\frac{\left(1+x\right)\left(1-x+x^2\right)}{1+x}-x\right]\right\}\)
\(A=\frac{x.\left(1-x\right)^2.\left(1+x\right)^2}{1+x^2}:\left[\left(1+2x+x^2\right).\left(1-2x+x^2\right)\right]\)
\(A=\frac{x.\left(1-x\right)^2.\left(1+x\right)^2}{1+x^2}:\left[\left(1-x\right)^2.\left(1+x\right)^2\right]\)
\(A=\frac{x.\left(1-x\right)^2.\left(1+x\right)^2}{\left(1+x^2\right).\left(1+x\right)^2.\left(1-x\right)^2}\)
\(A=\frac{x}{1+x^2}\)