cmr:
1/3+2/9+...+100/3100 <3/4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(2\dfrac{2}{10}=2,2\)
\(4\dfrac{31}{100}=4,31\)
9/10=0,9
51/10=5,1
75/100=0,75
125/100=1,25
1075/1000=1,075
\(14\dfrac{17}{100}=14,17\)
b: 1/2=0,5
3/4=0,75
4/5=0,8
5/8=0,625
\(2\dfrac{1}{2}=2,5\)
\(3\dfrac{1}{4}=3,25\)
\(1\dfrac{3}{5}=1,6\)
\(4\dfrac{3}{8}=4,375\)
ta có: \(A=\frac{1}{3}+\frac{2}{3^2}+...+\frac{100}{3^{100}}\)
\(\Rightarrow\frac{1}{3}A=\frac{1}{3^2}+\frac{2}{3^3}+...+\frac{100}{3^{101}}\)
\(\Rightarrow A-\frac{1}{3}A=\frac{1}{3}+\left(\frac{2}{3^2}-\frac{1}{3^2}\right)+...+\left(\frac{100}{3^{100}}-\frac{99}{3^{100}}\right)-\frac{100}{3^{101}}\)
\(\frac{2}{3}A=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}-\frac{100}{3^{101}}\)
+) Xét \(B=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\)
\(\Rightarrow\frac{1}{3}B=\frac{1}{3^2}+\frac{1}{3^3}...+\frac{1}{3^{101}}\)
\(\Rightarrow B-\frac{1}{3}B=\frac{1}{3}-\frac{1}{3^{101}}\)
\(\frac{2}{3}B=\frac{1}{3}-\frac{1}{3^{101}}\)
\(\Rightarrow B=\left(\frac{1}{3}-\frac{1}{3^{101}}\right):\frac{2}{3}=\left(\frac{1}{3}-\frac{1}{3^{101}}\right).\frac{3}{2}\)
Thay B vào A, ta có:
\(\frac{2}{3}A=\left(\frac{1}{3}-\frac{1}{3^{101}}\right).\frac{3}{2}-\frac{100}{3^{101}}\)
\(\Rightarrow A=\left(\left(\frac{1}{3}-\frac{1}{3^{101}}\right).\frac{3}{2}-\frac{100}{3^{101}}\right):\frac{2}{3}\)
\(A=\left(\left(\frac{1}{3}-\frac{1}{3^{101}}\right).\frac{3}{2}-\frac{100}{3^{101}}\right).\frac{3}{2}\)
\(A=\frac{9}{4}.\left(\frac{1}{3}-\frac{1}{3^{101}}\right)-\frac{100.3}{3^{101}.2}=\frac{9}{4}.\left(\frac{1}{3}-\frac{1}{3^{101}}\right)-\frac{150}{3^{101}}\)
\(A=\frac{3}{4}-\frac{9}{4}.\frac{1}{3^{101}}-\frac{150}{3^{101}}< \frac{3}{4}\)
\(\Rightarrow A=\frac{1}{3}+\frac{2}{3^2}+...+\frac{100}{3^{100}}< \frac{3}{4}\left(đpcm\right)\)