Tìm x biết |x + 2| + |x - 1| = 3x + 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1.
a) \(=x^2-6x+9+3x^2-15x=4x^2-21x+9\)
b) \(=9x^2+12x+4-x^2+9=8x^2+12x+13\)
2.
a) \(\Leftrightarrow x^2+8x+16-x^2+4-5=0\\ \Leftrightarrow8x=-15\\ \Leftrightarrow x=-\dfrac{15}{8}\)
b) \(\Leftrightarrow9x^2-6x+1-8x^2+12x-2x+3-5-x^2=0\\ \Leftrightarrow4x=1\\ \Leftrightarrow x=\dfrac{1}{4}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
b: Ta có: \(\left(x-2\right)^3-x^2\left(x-6\right)=4\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+6x^2=4\)
\(\Leftrightarrow12x=12\)
hay x=2
d: Ta có: \(3\left(x-1\right)^2-3x\left(x-5\right)=1\)
\(\Leftrightarrow3x^2-6x+3-3x^2+15x=1\)
\(\Leftrightarrow9x=-2\)
hay \(x=-\dfrac{2}{9}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
b
\(\left|6+x\right|\ge0;\left(3+y\right)^2\ge0\Rightarrow\left|6+x\right|+\left(3+y\right)^2\ge0\)
Suy ra \(\left|6+x\right|+\left(3+y\right)^2=0\)\(\Leftrightarrow\hept{\begin{cases}6+x=0\\3+y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-6\\y=-3\end{cases}}\)
a
Ta có:\(\left|3x-12\right|=3x-12\Leftrightarrow3x-12\ge0\Leftrightarrow3x\ge12\Leftrightarrow x\ge4\)
\(\left|3x-12\right|=12-3x\Leftrightarrow3x-12< 0\Leftrightarrow3x< 12\Leftrightarrow x< 4\)
Với \(x\ge4\) ta có:
\(3x-12+4x=2x-2\)
\(\Rightarrow5x=10\)
\(\Rightarrow x=2\left(KTMĐK\right)\)
Với \(x< 4\) ta có:
\(12-3x+4x=2x-2\)
\(\Rightarrow10=x\left(KTMĐK\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,2\left(x-1\right)-x\left(3-x\right)=x^2\)
\(\Leftrightarrow2x-2-3x+x^2=x^2\)
\(\Leftrightarrow\left(2x-3x\right)+\left(x^2-x^2\right)-2=0\)
\(\Leftrightarrow-\left(x+2\right)=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
\(b,3x\left(x+5\right)-2\left(x+5\right)=3x^2\)
\(\Leftrightarrow3x^2+15x-2x-10=3x^2\)
\(\Leftrightarrow\left(3x^2-3x^2\right)+\left(15x-2x\right)-10=0\)
\(\Leftrightarrow13x-10=0\Leftrightarrow13x=10\Leftrightarrow x=\frac{10}{13}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1)Tìm x
a) (x+1)(x-2)<0
=>Có 2TH:
TH1:
x+1<0=>x< -1
x-2>0=>x>2
=>Vô lí
TH2:
x+1>0=>x> -1
x-2<0=>x<2
=> -1<x<2
Vậy x thuộc {0;1}
b) Tương tự a thôi ạ.
c) (x-2)(3x+2)
=> Có hai TH:
TH1:
x-2<0=>x<2
3x+2<0=>3x< -2=>x< -2/3
=>x< -2/3
TH2:
x-2>0=>x>2
3x+2>0=>3x> -2=>x> -2/3
=>x>2
Vậy x< -2/3 hoặc x>2
2)Tìm x
x.x=x
<=>x²-x=0
<=>x(x-1)=0
<=>x=0 hoặc x=1
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài này lập bảng xét dấu nhé
Bài làm dưới đây mang tính chất giải trí :)
Áp dụng bất đẳng thức giá trị tuyệt đối vào vế trái ta được :
\(\left|x+2\right|+\left|x-1\right|=\left|x+2\right|+\left|1-x\right|\ge\left|x+2+1-x\right|=\left|3\right|=3\)
Dấu "=" xảy ra khi và chỉ khi \(\left(x+2\right)\left(1-x\right)\ge0\)
Do đó :
\(3=3x+2\)
\(\Leftrightarrow\)\(3x=3-2\)
\(\Leftrightarrow\)\(3x=1\)
\(\Leftrightarrow\)\(x=\frac{1}{3}\)
Trường hợp 1 :
\(\hept{\begin{cases}x+2\ge0\\x-1\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-2\\x\le1\end{cases}\Leftrightarrow}-2\le x\le1}\) ( thoã mãn )
Trường hợp 2 :
\(\hept{\begin{cases}x+2\le0\\1-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le-2\\x\ge1\end{cases}}}\) ( loại )
Vậy \(x=\frac{1}{3}\)
Chúc bạn học tốt ~