A=/2x+3/+/2y-7/+15 . Đặt giá trị nhỏ nhất của x,y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có:\(|2x-4|\ge0\forall x\)
\(\Rightarrow|2x-4|+13\ge13\forall x\)
hay A\(\ge13\forall x\)
Dấu "=" \(\Leftrightarrow|2x-4|=0\)
<=> 2x-4=0
<=> 2x=4
<=>x=2
Vậy Min A=13 đạt được khi x=2
b) Làm tương tự câu a)
c) \(C=\left(x-5\right)^2+25\)
Ta có: \(\left(x-5\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-5\right)^2+25\ge25\forall x\)
hay C \(\ge25\)
Dấu "=" <=> (x-5)2 =0
<=> x-5=0
<=> x=5
Vậy Min C=25 đạt được khi x=5
d) Làm tương tự c)
a) Vì \(\left|2x-4\right|\ge0\)
\(\Rightarrow\left|2x-4\right|+13\ge13\)
\(\Rightarrow A_{min} =13\)
b) Vì \(\hept{\begin{cases}\left|x+5\right|\ge0\\\left|2y-16\right|\ge0\end{cases}}\)
\(\Rightarrow\left|x+5\right|+\left|2y-16\right|+2015\ge0\)
\(\Rightarrow B_{min}=2015\)
Các phần sau làm tương tự như thế ^_^
Chúc bạn học tốt
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
b. + Vì \(|6-2x|\ge0\)\(\forall x\)
\(\Rightarrow\)\(|6-2x|-5\ge0-5\)\(\forall x\)
\(\Rightarrow\)B\(\ge\)-5 \(\forall x\)
Vậy GTNN của B= -5 \(\Leftrightarrow\)6-2x=0
\(\Leftrightarrow\)2x=6
\(\Leftrightarrow\)x=3
+ Vì -\(|6-2x|\le0\forall x\)
\(\Rightarrow\)\(|6-2x|-5\le0+5\forall x\)
\(\Rightarrow B\le5\forall x\)
Vậy GTLN của B= 5 \(\Leftrightarrow6-2x=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
c,+ Vì \(|x+1|\ge0\forall x\)
\(\Rightarrow\)\(3-|x+1|\ge3-0\forall x\)
\(\Rightarrow C\ge3\forall x\)
Vậy GTNN của C=3 \(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
+ Vì \(-|x+1|\le0\forall x\)
\(\Rightarrow3-|x+1|\le3+0\forall x\)
\(\Rightarrow C\le3\forall x\)
Vậy GTLN của \(C=3\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Mình chỉ làm vậy thôi nhé!
Ta có :
\(\left|2x+3\right|\ge0\)
\(\left|2y-7\right|\ge0\)
\(\Rightarrow\)\(A=\left|2x+3\right|+\left|2y-7\right|+15\ge15\)
Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}2x+3=0\\2y-7=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x=-3\\2y=7\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{-3}{2}\\y=\frac{7}{2}\end{cases}}}\)
Vậy GTNN của \(A\) là \(15\) khi \(x=\frac{-3}{2}\) và \(y=\frac{7}{2}\)
Chúc bạn học tốt ~
Rút gọn biểu thức : 3x (x-2) - 5x(1-x) -8(x^2 - 3)