(x+7)(3x-1)=49-x^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Theo bài ra ta có :
\(\left(x+7\right)\left(3x-1\right)-x^2+49=0\)
\(\Leftrightarrow\left(x+7\right)\left(3x-1\right)-\left(x^2-49\right)=0\)
\(\Leftrightarrow\left(x+7\right)\left(3x-1\right)-\left(\left(x-7\right)\left(x+7\right)\right)=0\)
\(\Leftrightarrow\left(x+7\right)\left(3x-1-x+7\right)=0\)
\(\Leftrightarrow\left(x+7\right)\left(2x+6\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}x+7=0\\2x+6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[\begin{matrix}x=-7\\x=-3\end{matrix}\right.\)
Vậy \(S=\left\{-3;-7\right\}\)
Chúc bạn học tốt =))
a/
<=>(x+7)(3x-1)-(x^2-7^2)=0
<=>(x+7)(3x-1)-(x-7)(x+7)=0
<=>(x+7)(3x-1-x+7)=0
<=>(x+7)(2x+6)=0
<=>x+7=0 hoặc 2x+6=0
<=>x=-7 2x=-6
<=> x=-3
=>S (-7;-3)
a/ (x-1)2-(4x+3)(2-x)=x2-2x+1-(8x-4x2+6-3x)
=x2-2x+1-8x+4x2-6+3x=5x2-7x-6
b/ (15x3y2 - 6x2y3) : 3x2y2 = 5x - 2y
c/ \(\dfrac{x+7}{x-7}-\dfrac{x-7}{x+7}+\dfrac{4x^2}{x^2-49}\)=\(\dfrac{\left(x+7\right)^2-\left(x-7\right)^2+4x^2}{\left(x-7\right)\left(x+7\right)}\)=\(\dfrac{x^2+14x+49-\left(x^2-14x+49\right)+4x^2}{\left(x-7\right)\left(x+7\right)}\)=\(\dfrac{28x+4x^2}{\left(x-7\right)\left(x+7\right)}\)=\(\dfrac{4x\left(x+7\right)}{\left(x-7\right)\left(x+7\right)}\)=\(\dfrac{4x}{x-7}\)
\(a,\left(x+7\right)\left(3x-1\right)=x^2-49\)
\(\left(x+7\right)\left(3x-1\right)-\left(x+7\right)\left(x-7\right)=0\)
\(\left(x+7\right)\left(3x-1-x+7\right)=0\)
\(\left(x+7\right)\left(2x+6\right)=0\)
\(\hept{\begin{cases}x+7=0\\2x+6=0\end{cases}}\)
\(\hept{\begin{cases}x=-7\\x=-3\end{cases}}\)
\(b,5\left(x-3\right)-4=2\left(x-1\right)+7\)
\(5x-15-4=2x-2+7\)
\(5x-19=2x+5\)
\(3x=24\)
\(x=8\)
\(a,\Leftrightarrow\left(3x-7\right)\left(3x+7\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=-\dfrac{7}{3}\end{matrix}\right.\\ b,\Leftrightarrow\left(x+2\right)\left(x-1-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\\ c,\Leftrightarrow4x^2-7x-2-4x^2+4x+3=7\\ \Leftrightarrow-3x=6\Leftrightarrow x=-2\\ d,\Leftrightarrow3x^2+2x+x^2+2x+1-4x^2+25=0\\ \Leftrightarrow4x=-26\Leftrightarrow x=-\dfrac{13}{2}\\ e,\Leftrightarrow x^3+27-x^3+x-27=0\\ \Leftrightarrow x=0\\ f,\Leftrightarrow\left(4x-3\right)\left(4x-3+3x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{3}{7}\end{matrix}\right.\)
a) 9x2-49=0
(3x)2-72=0
<=> (3x-7)(3x+7)=0
th1: 3x-7=0
<=>3x=7
<=>x=\(\dfrac{7}{3}\)
th2: 3x+7=0
<=>3x=-7
<=>x=\(-\dfrac{7}{3}\)
\(\left(1-x\right)\left(5x+3\right)=\left(3x-7\right)\left(x-1\right)\)
\(< =>\left(1-x\right)\left(5x+3+3x-7\right)=0\)
\(< =>\left(1-x\right)\left(8x-4\right)=0\)
\(< =>\orbr{\begin{cases}1-x=0\\8x-4=0\end{cases}< =>\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}}\)
\(\left(x-2\right)\left(x+1\right)=x^2-4\)
\(< =>\left(x-2\right)\left(x+1\right)=\left(x-2\right)\left(x+2\right)\)
\(< =>\left(x-2\right)\left(x+1-x-2\right)=0\)
\(< =>-1\left(x-2\right)=0\)
\(< =>2-x=0< =>x=2\)
a.
\(2^x=2^{3x-1}\Leftrightarrow x=3x-1\)
\(\Rightarrow x=\dfrac{1}{2}\)
b.
\(7^{x-5}=49\Leftrightarrow x-5=log_749=2\)
\(\Rightarrow x=7\)
c.
\(3^{5x-3}=1\Rightarrow5x-3=log_31=0\)
\(\Rightarrow x=\dfrac{3}{5}\)
d.
\(\left(\dfrac{1}{7}\right)^{5x}=7^{x+6}\Leftrightarrow7^{-5x}=7^{x+6}\)
\(\Leftrightarrow-5x=x+6\)
\(\Rightarrow x=-1\)
Ta có :
\(\left(x+7\right)\left(3x-1\right)=49-x^2\)
\(\Leftrightarrow\)\(\left(x+7\right)\left(3x-1\right)=7^2-x^2\)
\(\Leftrightarrow\)\(\left(x+7\right)\left(3x-1\right)=\left(x+7\right)\left(7-x\right)\)
\(\Leftrightarrow\)\(\left(x+7\right)\left(3x-1\right)-\left(x+7\right)\left(7-x\right)=0\)
\(\Leftrightarrow\)\(\left(x+7\right)\left(3x-1-7+x\right)=0\)
\(\Leftrightarrow\)\(\left(x+7\right)\left(4x-8\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x+7=0\\4x-8=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-7\\4x=8\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-7\\x=\frac{8}{4}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-7\\x=2\end{cases}}}\)
Vậy \(x=2\) hoặc \(x=-7\)
Chúc bạn học tốt ~
Ta có: (x+7)(3x-1)=49-x^2
\(\Rightarrow\left(x+7\right)\left(3x-1\right)-49+x^2=0\)
\(\Rightarrow4x^2+20-56=0\)
\(\Rightarrow\left(2x\right)^2+2.2x.5+5^2-81=0\)
\(\Rightarrow\left(2x+5\right)^2=81\)
\(\Rightarrow2x+5=9\)hoặc \(2x+5=-9\)
\(\Rightarrow x=2\)hoặc \(x=-7\)