K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
8 tháng 7 2024

Lời giải:

$p^2\vdots 10p$

$\Rightarrow p\vdots 10$

Vậy bất kỳ số nguyên $p$ thỏa mãn $p\vdots 10$ thì là các số thỏa mãn đề bài.

5 tháng 7 2023

Gọi số cần tìm là a ( a ∈ N)

Ta có:

a chia 5 dư 1

⇒ a+4 chia hết cho 5

a chia 7 dư 3

⇒ a+4 chia hết cho 7

Mà (5,7) = 1

⇒ a+4 chia hết cho 35

Vì a là số tự nhiên nhỏ nhất 

⇒a+4 = 35

⇒a=35-4

⇒a=31

Vậy số tự nhiên cần tìm là 31

5 tháng 7 2023

          1)Gọi số x là số tự nhiên nhỏ nhất cần tìm, theo đề bài ta có :

x=5a+1 ; x=7b+3

Nên 5a+1=7b+3

5a-7b=2

Ta thấy 5.6-7.4=2

Nên a=6; b=4

Vậy x=31

2) Theo đề bài : p2 + 4 và  p2 - 4 đều là số nguyên tố

⇒ (p2 + 4) và (p2 - 4) ⋮ 1 và chính nó

 ⇒ (p2 + 4) và (p2 - 4) ϵ {1;2;3;5;7;11;13...}

Ta thấy khi (p2 + 4) = 13 và (p2 - 4) = 5 thì p=3

Vậy p=3

1: Gọi số cần tìm là a

Theo đề, ta có: a-1 chia hết cho 5 và a-3 chia hết cho 7

mà a nhỏ nhất

nên a=31

2: TH1: p=3

=>p^2+4=13 và p^2-4=5

=>NHận

Th2: p=3k+1

p^2-4=(3k+1-2)(3k+1+2)

=3(k+1)(3k-1) 

=>Loại

TH3: p=3k+2

=>p^2-4=9k^2+12k+4-4

=9k^2+12k=3(3k^2+4k) 

=>Loại

10 tháng 8 2023

Bài 2 có lỗi không bạn?
q+qp> 2 mà đây là 1 số nguyên tố nên đây là số lẻ
 mà dù q chẵn hay lẻ thì q+qp chẵn (vô lý)

1:

a: =>7(x+1)=72-16=56

=>x+1=8

=>x=7

b: (2x-1)^3=4^12:16=4^10

=>\(2x-1=\sqrt[3]{4^{10}}\)

=>\(2x=1+\sqrt[3]{4^{10}}\)

=>\(x=\dfrac{1+\sqrt[3]{4^{10}}}{2}\)(loại)

c: \(\Leftrightarrow6x-2+7⋮3x-1\)

=>3x-1 thuộc Ư(7)

mà x là số tự nhiên

nên 3x-1 thuộc {-1}

=>x=0

d: x^2+7 chia hết cho 2x^2+1

=>2x^2+14 chia hết cho 2x^2+1

=>2x^2+1+13 chia hết cho 2x^2+1

=>2x^2+1 thuộc Ư(13)

=>2x^2+1=1(Vì x là số tự nhiên)

=>x=0

10 tháng 8 2023

What, e mới lớp 6 mà căn bậc gì đây rồii

 

6 tháng 8 2016

p nguyên tố > 3 => 10p không chia hết cho 3, gt có 10p+1 không chia hết cho 3
10p, 10p+1, 10p+2 là 3 số nguyên liên tiếp nên phải có 1 số chia hết cho 3
từ các lí luận trên => 10p+2 = 2(5p+1) chia hết cho 3 (*)
mà 2 và 3 đều là những số nguêyn tố nên từ (*) => 5p+1 chia hết cho 3
mặt khác p > 3 và nguyên tố nên p là số lẻ => 5p+1 là số chẳn => chia hết cho 2
Vậy 5p+1 chia hết cho 2 và 3 là 2 số nguyên tố cùng nhau
=> 5p+1 chia hết cho 2*3 = 6

Chúc bn hok tốt

6 tháng 8 2016

+ Do p nguyên tố > 3 => p chia 3 dư 1 hoặc 2

Nếu p chia 3 dư 2 thì p = 3k + 2 (k thuộc N*) => 10p + 1 = 10.(3k + 2) + 1 = 30k + 20 + 1 = 30k + 21 chia hết cho 3, là hợp số, loại

=> p = 3k + 1

=> 5p + 1 = 5.(3k + 1) + 1 = 15k + 5 + 1 = 15k + 6 chia hết cho 3 (1)

+ Do p nguyên tố > 3 => p lẻ => 5p lẻ => 5p + 1 chẵn => 5p + 1 chia hết cho 2 (2)

Từ (1) và (2); do (3;2)=1 => 5p + 1 chia hết cho 6 (đpcm)

Bài này là chứng minh chứ ko fai tìm nha bn