Chứng minh rằng
x^2-4x+10\(\ge\) 0 \(\forall\)x\(\in\)R
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phủ định của mệnh đề A là mệnh đề “\(\exists x \in \mathbb{R},{x^2} + 4x + 5 = 0\)”
Phủ định của mệnh đề B là mệnh đề “\(\exists x \in \mathbb{R},{x^2} + x < 1\)”
Phủ định của mệnh đề C là mệnh đề “\(\forall x \in \mathbb{Z},2{x^2} + 3x - 2 \ne 0\)”
Phủ định của mệnh đề D là mệnh đề “\(\forall x \in \mathbb{Z},{x^2} \ge x\)”
\(x^4+4x^3+6x^2+4x+1\)
\(=\left(x^4+2x^3+x^2\right)+\left(2x^3+4x^2+2x\right)+\left(x^2+2x+1\right)\)
\(=x^2\left(x^2+2x+1\right)+2x\left(x^2+2x+1\right)+\left(x^2+2x+1\right)\)
\(=\left(x^2+2x+1\right)\left(x^2+2x+1\right)=\left(x+1\right)^4\ge0;\forall x\in R\)
a) Ta có:
\(x^2+4x+5\)
\(=x^2+2.x.2+4+1\)
\(=\left(x+2\right)^2+1\)
Vì \(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2+1>0\forall x\)
\(\Rightarrow x^2+4x+5>0\forall x\)
b) Ta có:
\(x^2-x+1\)
\(=x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
\(\Rightarrow x^2-x+1>0\forall x\)
c) Ta có:
\(12x-4x^2-10\)
\(=-\left(4x^2-12x+10\right)\)
\(=-\left[\left(2x\right)^2-2.2x.3+9+1\right]\)
\(=-\left(2x-3\right)^2-1\)
Vì \(-\left(2x-3\right)^2\le0\forall x\)
\(\Rightarrow-\left(2x-3\right)^2-1< 0\forall x\)
\(\Rightarrow12x-4x^2-10< -1\)
a) \(x^2+x+2=\left(x^2+x+\frac{1}{4}\right)+\frac{7}{4}=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}>0\)đúng \(\forall x\in R\)
b) \(x^2-4x+10=\left(x^2-4x+4\right)+6=\left(x-2\right)^2+6\ge6>0\)đúng \(\forall x\in R\)
c) \(x\left(x-4\right)+10=x^2-4x+10\)(giải như câu b)
d) \(x\left(2-x\right)-4=-\left(x^2-2x+1\right)-3=-\left(x-1\right)^2-3\le-3< 0\)đúng \(\forall x\in R\)
e) \(x^2-5x+2017=\left(x^2-5x+\frac{25}{4}\right)+\frac{8043}{4}=\left(x-\frac{5}{2}\right)^2+\frac{8043}{4}\ge\frac{8043}{4}>0\)đúng \(\forall x\in R\)
a ) \(x^2+4x+5=x^2+2.x.2+2^2+1=\left(x+2\right)^2+1\)
\(Do\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+1\ge1>0\forall x\left(đpcm\right)\)
b) \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
\(Do\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\left(đpcm\right)\)
c)\(-\left(4x^2-12x+9\right)-1=-\left(2x-3\right)^2-1\)
\(Do-\left(2x-3\right)\le0\Rightarrow-\left(2x-3\right)-1\le-1\forall x\)
\(x^2+2.x.2+2^2+5-4\) \(\Rightarrow\left(x+2\right)^2+5-4\) \(\Rightarrow\left(x+2\right)^2+1\)
vì \(\left(x+2\right)^2\ge0\) \(\Rightarrow\left(x+2\right)^2+1\ge1\) \(\ge0\) \(\Rightarrow dpcm\)
b) \(x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+1-\left(\frac{1}{2}\right)^2\) \(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{5}{4}\)
vì \(\left(x+\frac{1}{2}\right)^2\ge0\) \(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\ge0\) \(\Rightarrow dpcm\)
c) \(12x-4x^2-10=-\left(4x^2-12x+10\right)\) = \(\left[\left(2x\right)^2-2.2x.3+3^2\right]+10-3^2\)
\(\Rightarrow\left(2x-3\right)^2+10-9\) \(\Rightarrow\left(2x-3\right)^2+1\) vì \(\left(2x-3\right)^2\ge0\Rightarrow\left(2x-3\right)^2+1\ge1hay\ge0\left(1>0\right)\Rightarrow dpcm\)
Với \(x=\dfrac{1}{2}\in R\Rightarrow x^2=\dfrac{1}{4}< x=\dfrac{1}{2}\)
Do đó mệnh đề đã cho sai
Mệnh đề phủ định:
\("\exists x\in R,x^2< x"\)
\(a,A=4x-x^2+3\)
\(=-\left(x^2-4x+4\right)+7\)
\(=-\left(x-2\right)^2+7\le7\forall x\)
Dấu"=" xảy ra<=> \(-\left(x-2\right)^2=0\Leftrightarrow x=2\)
Vậy......
\(b,B=4-x^2+2x\)
\(=-\left(x^2-2x+1\right)+5\)
\(=-\left(x-1\right)^2+5\le5\forall x\)
Dấu"=" xảy ra<=> \(-\left(x-1\right)^2=0\Leftrightarrow x=1\)
Vậy......
B2:
a) ta có: \(a^2+b^2-2ab\ge0\)
\(\Rightarrow\left(a-b\right)^2\ge0\forall a;b\) (luôn đúng)
\(\Rightarrowđpcm\)
b) Ta có: \(a^2+b^2\ge-2ab\)
\(\Rightarrow\left(a+b\right)^2\ge0\forall a;b\) (luôn đúng)
\(\Rightarrowđpcm\)
\(x^2+4x+8=x^2+2.2x+4+4=\left(x+2\right)^2+4\\ \left(x+2\right)^2\ge0\forall x\\ =>\left(x+2\right)^2+4>4\left(>0\right)\forall x\\ =>x^2+4x+8>0\left(\forall x\right)\)
\(Ta\) \(có:\) \(x^2+4x+8\)
\(=x^2+4x+4+4\)
\(=\left(x+2\right)^2+4\)
\(mà:\) \(\left(x+2\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+4>0\) \(hay\) \(x^2+4x+8>0\) với mọi x
a) Mọi số thực có bình phương không âm.
b) Có một số thực nhỏ hơn nghịch đảo của chính nó.
a. P:" Với mọi số thực x thì bình phương của nó luôn lớn hơn hoặc bằng 0"
b, A:"Tồn tại ít nhất một số thực x mà nghịch đảo của nó lớn hơn chính nó"
\(x^2-4x+10=x^2-4x+4+6=\left(x-2\right)^2+6>0\forall x\)
có thể trình bày cả bài ra đc k ạ