Tính:C=1/21/2^3+1/2^5+...+1/2^99
Help me please!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100
4A=(1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100)4
4A=1.2.3(4-0)+2.3.4(5-1)+3.4.5(6-2)+4.5.6(7-3)+...+98.99.100(101-97)
4A=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+4.5.6.7-3.4.5.6+...+98.99.100.101-97.98.99.100
4A=1.2.3.4-1.2.3.4+2.3.4.5-2.3.4.5+3.4.5.6-3.4.5.6+...+97.98.99.100-97.98.99.100+98.99.100.101
4A=98.99.100.101
=>A=98.99.100.101/4
=> A=24497550
\(c,\dfrac{5}{18}\times\dfrac{2}{15}:\dfrac{1}{5}\\ =\dfrac{1}{9}\times\dfrac{1}{3}\times5\\ =\dfrac{5}{27}\\ d,\dfrac{4}{13}+\dfrac{2}{11}:\dfrac{4}{33}\\ =\dfrac{4}{13}+\dfrac{2}{11}\times\dfrac{33}{4}\\ =\dfrac{4}{13}+\dfrac{3}{2}=\dfrac{8}{26}+\dfrac{39}{26}\\ =\dfrac{47}{26}\)
Bài 1:
a. ĐKXĐ: $3x\geq 0$
$\Leftrightarrow x\geq 0$
b. ĐKXĐ: $\frac{x-1}{x+3}\geq 0$
\(\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} x-1\geq 0\\ x+3>0\end{matrix}\right.\\ \left\{\begin{matrix} x-1\leq 0\\ x+3< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x\geq 1\\ x< -3\end{matrix}\right.\)
Bài 2:
\(C=\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}=\sqrt{2+2\sqrt{2.3}+3}-\sqrt{2-2\sqrt{2.3}+3}\)
\(=\sqrt{(\sqrt{2}+\sqrt{3})^2}-\sqrt{(\sqrt{2}-\sqrt{3})^2}\)
\(=|\sqrt{2}+\sqrt{3}|-|\sqrt{2}-\sqrt{3}|=(\sqrt{2}+\sqrt{3})-(\sqrt{3}-\sqrt{2})\)
\(=2\sqrt{2}\)
a)=-7/21+8/24
=-1/3+1/3
=0
b)=-3/5.(2/7+5/7)+23/5
=-3/5.7/7+23/5
=-3/5.1+23/5
=-3/5+23/5
=20/5=4
c)=75/100-11/2+5/10:5/12+1/4
=3/4-11/2+1/2:5/12+1/4
=3/4+-11/2+1/2.12/5+1/4
=3/4+-22/4+6/5+1/4
=-19/4+6/5+1/4
=(-19/4+1/4)+6/5
=-18/4+6/5
=-9/2+6/5
=-45/10+12/10
=-23/10
\(C=-\left[\dfrac{1}{3}\cdot\dfrac{\left(3+1\right)\cdot3}{2}+\dfrac{1}{4}\cdot\dfrac{\left(4+1\right)\cdot4}{2}+...+\dfrac{1}{50}\cdot\dfrac{\left(50+1\right)\cdot50}{2}\right]\\ C=-\left(\dfrac{1}{3}\cdot\dfrac{4\cdot3}{2}+\dfrac{1}{4}\cdot\dfrac{5\cdot4}{2}+...+\dfrac{1}{50}\cdot\dfrac{51\cdot50}{2}\right)\\ C=-\left(2+\dfrac{5}{2}+...+\dfrac{51}{2}\right)\\ C=-\dfrac{4+5+...+51}{2}=-\dfrac{\dfrac{\left(51+4\right)\left(51-4+1\right)}{2}}{2}=-\dfrac{55\cdot48}{4}=-660\)
- \(\dfrac{3}{4}\).(-\(\dfrac{55}{9}\)).\(\dfrac{8}{11}\)
= \(\dfrac{3.5.11.4.2}{4.3.3.11}\)
= \(\dfrac{10}{3}\)
1\(\dfrac{4}{23}\) + (\(\dfrac{5}{21}\) - \(\dfrac{4}{23}\)) + \(\dfrac{16}{21}\) - \(\dfrac{1}{2}\)
= 1 + \(\dfrac{4}{23}\) + \(\dfrac{5}{21}\) - \(\dfrac{4}{23}\) + \(\dfrac{16}{21}\) - \(\dfrac{1}{2}\)
= 1 + (\(\dfrac{4}{23}\) - \(\dfrac{4}{23}\)) + (\(\dfrac{5}{21}\) + \(\dfrac{16}{21}\)) - \(\dfrac{1}{2}\)
= 1 + 0 + 1 - \(\dfrac{1}{2}\)
= 2 - \(\dfrac{1}{2}\)
= \(\dfrac{3}{2}\)