K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2018

\(S=\frac{5}{20}+\frac{5}{21}+\frac{5}{22}+...+\frac{5}{49}\)

\(S>5\left(\frac{1}{49}+\frac{1}{49}+...+\frac{1}{49}\right)\)(30 số hạng \(\frac{1}{49}\))

\(\Leftrightarrow S>5.\frac{30}{49}\)

\(\Leftrightarrow S>\frac{150}{49}=3\frac{3}{49}\)

\(\Rightarrow S>3\)

\(\Rightarrow S>\frac{3}{49}\)

Vậy \(3< S\)  (1)

Ta lại có: \(S< 5.\left(\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\right)\)(30 số hạng)

\(S< \frac{30}{20}.5=\frac{150}{20}=\frac{15}{2}=7\frac{1}{2}\)

\(\Rightarrow S< 7< 8\)

\(\Rightarrow S< \frac{1}{2}\)

Vậy \(S< 8\) (2)

Từ (1) và (2) ta có đpcm

25 tháng 3 2018

thank you very much

khi minh vua dang

3 tháng 9 2023

\(S=2^0+2^1+2^2+...+2^7\)

\(\Rightarrow S=\left(2^0+2^1\right)+2^2\left(2^0+2^1\right)+...+2^6\left(2^0+2^1\right)\)

\(\Rightarrow S=3+2^2.3+...+2^6.3\)

\(\Rightarrow S=3\left(1+2^2+...+2^6\right)⋮3\)

\(\Rightarrow dpcm\)

25 tháng 2 2017

2.a) Vào question 126036

b) Vào question 68660

Cho S = 1/21 + 1/22 + 1/23 +... + 1/60

S1=1/21 + 1/22 +..+ 1/40 (20 số hạng); S2= 1/41 + 1/42 +... + 1/60 (20 số hạng)

* Ta thấy: S> 1/40 x 20 = 1/2 (vì 1/40 = 1/40, 19 số hạng kia đều lớn hơn 1/40); S> 1/60 x 20 = 1/3

\(\Rightarrow\)S > 1/2 + 1/3 = 5/6 = 25/30 > 22/30 = 11/15

Vậy 1/21 + 1/22 + ... + 1/60 > 11/15

* Ta thấy: S1 < 1/21 x 20 = 20/21(vì 1/20 = 1/20, 19 số hạng còn lại đều bé hơn 1/21); S< 1/41 x 20 = 20/41

\(\Rightarrow\)S < 20/21 + 20/41 = 1240/861 < 3/2 (đoạn này thì bạn phải dùng máy tính chứ mik ko bt tính nhanh kiểu j)

Ta có đpcm

10 tháng 2 2016

c1:A=B

c2:A=11

c3:B=1\20

c4:mk k bit