chung minh
3546 chia het cho 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(x-y⋮3=>5x-5y⋮3\)
Do 12 chia hết cho 3 nên 12y cũng chia hết cho 3
=> \(5x-5y+12y⋮3=>5x+7y⋮3\)
Vậy ...
\(a.ababab=ab.10101⋮3\)
\(b.36a⋮9;27b⋮9\Rightarrow36a+27b⋮9\)
\(a.42k+14\)
\(42k⋮7;14⋮7\Rightarrow42k+14⋮7\)
\(\Rightarrow\text{Số chia 42 dư 14 thì chia hết cho 7}\)
ta có: a3+b3=(a+b)(a2-ab+b2)
vì a3+b3 chia hết cho 3 nên a+b chia hết cho 3
1.
dấu hiệu chia hết cho 11: một số chia hết cho 11 khi và chỉ khi :tổng các chữ số hàng chẵn-tổng các chữ số hàng lẻ chia hết cho 11
theo giả thiết:/ab+/cd+/eg = 10a + b + 10c + d + 10e + g = 11(a+c+e) + (b+d+g) - (a+c+e) chia hết cho 11
suy ra: (b+d+g) - (a+c+e) chia hết cho 11
suy ra : /abcdeg chia hết cho 11
2.
abcdeg = abc.1000+deg = abc.994 +abc.6 +deg
= abc.994 + abc.6 - 6deg +7deg =abc.994 + 6.(abc - deg) +7deg
Vì abc.994=abc.7.142 chia hết cho 7
abc - deg chia hết cho 7 =>6.(abc - deg ) chia hết cho 7
7.deg chia hết cho 7
Từ 3 ý trên =>abc.994 +6.(abc - deg) + 7deg chia cho 7
vậy abcdeg chia hết cho 7
Nếu 2a + 7b chia hết cho 3 thì :
2+7 chia hết cho 3.
a+b chia hết cho 3
Vì 4 + 2 chia hết cho 3 nên a+b phải chia hết cho 3.
Vậy 4a + 2b chia hết cho 3.
\((2a+7b)\vdots 3\rightarrow (4a+14b)\vdots3\\\rightarrow[(4a+2b)+12b]\vdots3\\mà 12b\vdots3 \rightarrow (4a+2b) \vdots 3. đpcm\)
Ta có 2a+7b chia hết cho 3
=> 2.(2a+7b) chia hết cho 3
=> 4a+14b chia hết cho b
=> 4a+14b-12b chia hết cho 3 ( vì 12b chia hết cho 3 )
=> 4a+2b chia hết cho 3
vi 3+5+4+6 chia het cho 3