K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2018

Ta có: \(\frac{a-b}{a+b}=\frac{\left(a-b\right)\left(a+b\right)}{\left(a+b\right)\left(a+b\right)}=\frac{a^2-b^2}{a^2+2ab+b^2}< \frac{a^2-b^2}{a^2+b^2}\)

13 tháng 8 2019

có 

\(a>b\Leftrightarrow a-b>0\) (1)

\(a,b>0\Leftrightarrow2ab>0\)

\(a^2+2ab+b^2>a^2+b^2\Leftrightarrow\left(a+b\right)^2-\left(a^2+b^2\right)>0\) (2)

nhân 1 ,2 thì dc

\(\left(a-b\right)\left\{\left(a+b\right)^2-\left(a^2+b^2\right)\right\}>0\)

\(\frac{\left(a-b\right)\left(a+b\right)^2-\left(a-b\right)\left(a^2+b^2\right)}{\left(a+b\right)\left(a^2+b^2\right)}>0\) " nhân 2 vế cho 1/(a+b(a^2+b^2) 

\(\frac{\left(a-b\right)\left(a+b\right)\left(a+b\right)}{\left(a+b\right)\left(a^2+b^2\right)}-\frac{\left(a-b\right)\left(a^2+b^2\right)}{\left(a+b\right)\left(a^2+b^2\right)}>0\)

\(\frac{a^2-b^2}{a^2+b^2}-\frac{a-b}{a+b}>\frac{0\Leftrightarrow a^2-b^2}{a^2+b^2}>\frac{a-b}{a+b}\)

6 tháng 6 2017

xời làm hoài Câu hỏi của LIVERPOOL - Toán lớp 9 - Học toán với OnlineMath

31 tháng 7 2019

1. BĐT ban đầu

<=> \(\left(\frac{1}{3}-\frac{b}{a+3b}\right)+\left(\frac{1}{3}-\frac{c}{b+3c}\right)+\left(\frac{1}{3}-\frac{a}{c+3a}\right)\ge\frac{1}{4}\)

<=>\(\frac{a}{a+3b}+\frac{b}{b+3c}+\frac{c}{c+3a}\ge\frac{3}{4}\)

<=> \(\frac{a^2}{a^2+3ab}+\frac{b^2}{b^2+3bc}+\frac{c^2}{c^2+3ac}\ge\frac{3}{4}\)

Áp dụng BĐT buniacoxki dang phân thức 

=> BĐT cần CM

<=> \(\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+3\left(ab+bc+ac\right)}\ge\frac{3}{4}\)

<=> \(a^2+b^2+c^2\ge ab+bc+ac\)luôn đúng 

=> BĐT được CM

31 tháng 7 2019

2) \(a+b+c\le ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)\(\Leftrightarrow\)\(\left(a+b+c\right)^2-3\left(a+b+c\right)\ge0\)

\(\Leftrightarrow\)\(\left(a+b+c\right)\left(a+b+c-3\right)\ge0\)\(\Leftrightarrow\)\(a+b+c\ge3\)

ko mất tính tổng quát giả sử \(a\ge b\ge c\)

Có: \(3\le a+b+c\le ab+bc+ca\le3a^2\)\(\Leftrightarrow\)\(3a^2\ge3\)\(\Leftrightarrow\)\(a\ge1\)

=> \(\frac{1}{1+a+b}+\frac{1}{1+b+c}+\frac{1}{1+c+a}\le\frac{3}{1+2a}\le1\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=1\)