cho a,b,b thuộc R. chứng minh : a2 + b2 + 4 >= ab + 2 (a+b)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
Do \(\left\{{}\begin{matrix}a>2\Rightarrow\frac{1}{a}< \frac{1}{2}\\b>2\Rightarrow\frac{1}{b}< \frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\frac{1}{a}+\frac{1}{b}< \frac{1}{2}+\frac{1}{2}=1\)
\(\Rightarrow\frac{a+b}{ab}< 1\Rightarrow a+b< ab\) (đpcm)
b/ Ko rõ đề là gì
c/ \(\frac{a^2+b^2}{2}\ge ab\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Vậy BĐT được chứng minh
Biến đổi vế trái ta có:
VT = (a + b)( a 2 – ab + b 2 ) + (a – b)( a 2 + ab + b 2 )
= a 3 + b 3 + a 3 – b 3 = 2 a 3 = VP
Vế trái bằng vế phải nên đẳng thức được chứng minh.
chữ " b" mk ghi ở phần b) trước "CMR " là gõ nhầm đấy, ko liên quan j đến bài toán đâu !!
Ta có :
\(a^2+b^2+4\ge ab+2\left(a+b\right)\)
\(\Leftrightarrow\)\(2a^2+2b^2+8\ge2ab+4a+4b\)
\(\Leftrightarrow\)\(\left(a^2-2ab+b^2\right)+\left(a^2-4a+4\right)+\left(b^2-4b+4\right)\ge0\)
\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(a-2\right)^2+\left(b-2\right)^2\ge0\) ( thoã mãn với mọi a, b )
Vậy \(a^2+b^2+4\ge ab+2\left(a+b\right)\)
Sai thì thôi ạk em mới lớp 7
Thêm vào nha chị :
\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(a-2\right)^2+\left(b-2\right)^2\ge0\)
Dấu "=" xảy ra khi \(a=b\)
Vậy ...
Chúc chị học tốt ~