A=\(\frac{8n+193}{4n+3}\)
Tìm n\(\in\)N sao cho 150<n<170
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(n \in N \Rightarrow 4n+3 \in N\)
\(8n+193 \in N\)
Nên để A là số tự nhiên thì \(\frac{{8n+193}}{{4n+3}} \in N\)
\(\Leftrightarrow 8n+193 \in 4n+3\)
Mà \(4n+3 \vdots 4n+3\) nên \(2(4n+3) \vdots 4n+3\)
Mk xin lỗi nha, mk k kịp lm hết mong bạn thông cảm!!
a) \(\frac{8n+193}{4n+3}=\frac{8n+6+187}{4n+3}=2+\frac{187}{4n+3}\inℕ\)mà \(n\inℕ\)
suy ra \(4n+3\inƯ\left(187\right)\Rightarrow4n+3\in\left\{11;17;187\right\}\)(vì \(4n+3\ge3\))
\(\Rightarrow n\in\left\{2;46\right\}\).
b) \(\frac{8n+193}{4n+3}=\frac{8n+6+187}{4n+3}=2+\frac{187}{4n+3}\)rút gọn được khi \(\frac{187}{4n+3}\)rút gọn được.
Ta có: \(187=11.17\)suy ra \(\orbr{\begin{cases}\left(4n+3\right)⋮11\\\left(4n+3\right)⋮17\end{cases}}\)
- \(4n+3=11k\Leftrightarrow n=\frac{11k-3}{4}\)
\(150< n< 170\Rightarrow150< \frac{11k-3}{4}< 170\Rightarrow55\le k\le62\)
ta có các giá trị của \(n\)thỏa mãn là: \(156,167\).
- \(4n+3=17k\)xét tương tự, thu được các giá trị \(n\)thỏa mãn là: \(165\)
Vậy các giá trị của \(n\)thỏa mãn là: \(156,165,167\).
Để A tối giản thì:
(8n + 193, 4n + 3) = 1
Gọi d là ƯC nguyên tố của 8n + 193 và 4n + 3
=> 8n + 193 - 4n - 3 chia hết cho d
=> 4n + 190 chia hết cho d
=> 4n + 3 + 187 chia hết cho d
=> 187 chia hết cho d
Mà d nguyên tố => d = 11 hoặc d = 17
+) Tìm a để 8n + 193 chia hết cho 11, 4n + 3 chia hết cho 11
Vì 8n + 193 = 2.(4n + 3) + 187 nên 4n + 3 chia hết cho 11 thì 8n + 193 chia hết cho 11
=> 4n + 3 = 11k (k thuộc N) => 4n = 11k - 3 => n = \(\frac{11k-3}{4}\)
+) Tìm a để 8n + 193 chia hết cho 17, 4n + 3 chia hết cho 17
Vì 8n + 193 = 2.(4n + 3) + 187 nên 4n + 3 chia hết cho 17 thì 8n + 193 chia hết cho 17
=> 4n + 3 = 17k (k thuộc N) => 4n = 17 - 3 => n = \(\frac{17k-3}{4}\)
Vậy n \(\ne\frac{11k-3}{4}\) và n \(\ne\frac{17k-3}{4}\) thì A tối giản.
dùng ( a,b)=1 => (a,a-b)=1
để A tối giản thì ước của 2 cái kia =1
mà 8n+193 là lẻ nên (8n+193.8n+6)=1
áp dụng cái trên..... ko lm đc nhắn tin cho tôi
Bạn nên ghi thêm là: Tìm n để A nguyên, biết ....
Để \(A\)nguyên <=> \(\frac{8n+193}{4n+3}\)nguyên <=> \(8n+193⋮4n+3\)
<=> \(8n+6+187⋮4n+3\)
<=> \(2\left(4n+3\right)+187⋮4n+3\)
Vì \(2\left(4n+3\right)⋮4n+3\)=> \(187⋮4n+3\)
=> \(4n+3\inƯ187\)
Mà Ư(187) = \(\left\{1;-1;187;-187\right\}\)
=> \(n\in\left\{-1;46\right\}\)
Do \(150< n< 170\)=> \(n\in\varnothing\)