1+n = m
tìm m
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=>\(3^{m-1}\cdot5^{n+1}=3^{2m+2n}\cdot5^{m+n}\)
=>2m+2n=m-1 và n+1=m+n
=>m=1 và 2n+2=1-1=0
=>n=-1 và m=1
Vì n<10 nên 1/n > 1/10
Khi đó 1/m = 1/6 +1/n >1/6+1/10 =4/15 > 1/4 ->m <4 -> m = 1; 2 hoặc 3
Thử m = 1 ->1/n = 1 - 1/6 =5/6 (loại)
Thử m =2 -> 1/n = 1/2 -1/6 =1/3 -> n =3
Thử m =3 ->1/n =1/3 -1/6 =1/6 -> n=6
Vậy m=2; n=3 hoặc m=3; n=6 là kết quả cần tìm
Vì n<10 nên 1/n > 1/10 Khi đó 1/m = 1/6 +1/n >1/6+1/10 =4/15 > 1/4 ->m <4 -> m = 1; 2 hoặc 3 Thử m = 1 ->1/n = 1 - 1/6 =5/6 (loại) Thử m =2 -> 1/n = 1/2 -1/6 =1/3 -> n =3 Thử m =3 ->1/n =1/3 -1/6 =1/6 -> n=6 Vậy m=2; n=3 hoặc m=3; n=6 là kết quả cần tìm
2)
a)Ta có: 2m+5=n.(m-1)
=> 2m+5=nm-n
=>2m+5-nm+n=0
=>(2-n).m+5+n=0
=>(2-n).m-(2-n)+5+2=0
=>(2-n).(m-1)+7=0
=>(2-n).(m-1)=-7=-1.7=-7.1
Ta có bảng sau:
2-n | 1 | -7 | -1 | 7 |
n | 1 | 9 | 3 | -5 |
m-1 | -7 | 1 | 7 | -1 |
m | -6 | 2 | 8 | 0 |
Vậy (n,m)=(1,-6),(9,2),(3,8),(-5,0)
M = \(\dfrac{3n+19}{n-1}\)
M \(\in\)N* ⇔ 3n + 19 ⋮ n - 1
⇔ 3n - 3 + 22 ⋮ n - 1
⇔ 3( n -1) + 22 ⋮ n - 1
⇔ 22 ⋮ n - 1
⇔ n - 1 ⋮ \(\in\){ -22; -11; -2; -1; 1; 2; 11; 22}
⇔ n \(\in\) { -21; -10; -1; 0; 2; 3; 12; 23}
Vì n \(\in\) N* ⇒ n \(\in\) {0; 2; 3; 12; 23}
b, Gọi d là ước chung lớn nhất của 3n + 19 và n - 1
Ta có: \(\left\{{}\begin{matrix}3n+19⋮d\\n-1⋮d\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}3n+19⋮d\\3n-3⋮d\end{matrix}\right.\)
Trừ vế cho vế ta được:
3n + 19 - (3n - 3) ⋮ d
⇒ 3n + 19 - 3n + 3 ⋮ d
⇒ 22 ⋮ d
Ư(22) = { - 22; -11; -2; -1; 1; 2; 22}
⇒ d \(\in\) {1; 2; 11; 22}
nếu n chẵn 3n + 19 lẻ; n - 1 lẻ => d không chia hết cho 2, không chia hết cho 22
nếu n # 11k + 1 => n - 1 # 11k => d không chia hết cho 11
Vậy để phân số M tối giản thì
n \(\in\) Z = { n \(\in\) Z/ n chẵn và n # 11k + 1 ; k \(\in\)Z}
Hôm nay olm sẽ hướng dẫn em giải bài này như sau
Biến đổi đưa bài toán trở thành dạng tìm điều kiện để phân số là một số nguyên em nhé
\(\dfrac{4}{m}\) - \(\dfrac{1}{n}\) = 1 ⇒ 4n - m = mn ⇒m + mn = 4n ⇒ m(1+n) = 4n
m = \(\dfrac{4n}{1+n}\) (n \(\ne\) 0; -1)
m \(\in\) Z ⇔ 4n ⋮ 1 + n ⇒ 4n + 4 - 4 ⋮ 1 + n ⇒ 4(n+1) - 4 ⋮ 1 + n
⇒ 4 ⋮ 1 + n ⇒ n + 1 \(\in\) { -4; -2; -1; 1; 2; 4}
⇒ n \(\in\) { -5; -3; -2; 0; 1; 3} vì n \(\ne\) 0 ⇒ n \(\in\){ -5; -3; -2; 1; 3}
⇒ m \(\in\){ 5; 6; 8; 2; 3}
Vậy các cặp số nguyên m; n thỏa mãn đề bài lần lượ là:
(m; n) =(5; -5); (6; -3); ( 8; -2); (2; 1); ( 3; 3)
m có rất nhiều giá trị tương ứng với n
Muốn tìm m ta chỉ cần thay giá trị của n thành một số bất kì sau đó cộng với 1 là ra m
muốn tìm m ta chỉ cần lấy 1 + n thì sẽ ra m
nhớ T - I - C - K đúng cho mình nha