K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2015

\(2011+2010+2009+...+x=2011\)

\(2011+\left(2010+2009+...+x\right)=2011\)

\(2010+2009+...+x=2011-2011\)

\(2010+2009+...+x=0\)

\(\rightarrow\) Từ 2010->x có: x số

\(\rightarrow\) \(\frac{\left(x+2010\right).x}{2}=0\)

       \(\left(x+2010\right).x=0.2\)

       \(\left(x+2010\right).x=0\)

\(\Rightarrow x+2010=0\)

       \(x=0+2010\)

       \(x=-2010\)

\(V\text{ậy}\) \(x=-2010\)

Tâm Trần Hiếu sai rùi vì 0-2010 mới bằng -2010

24 tháng 8 2016

Aj giải giúp tui với.....! :-(

10 tháng 6 2017

\(pt\Leftrightarrow\frac{1-\sqrt{x-2009}}{x-2009}+\frac{1-\sqrt{y-2010}}{y-2010}+\frac{1-\sqrt{z-2011}}{z-2011}=-\frac{3}{4}\)

\(\Leftrightarrow\left(\frac{1}{x-2009}-\frac{\sqrt{x-2009}}{x-2009}+\frac{1}{4}\right)+\left(\frac{1}{y-2010}-\frac{\sqrt{y-2010}}{y-2010}+\frac{1}{4}\right)+\left(\frac{1}{z-2011}-\frac{\sqrt{z-2011}}{z-2011}+\frac{1}{4}\right)=0\)

\(\Leftrightarrow\left(\frac{1}{x-2009}-\frac{1}{\sqrt{x-2009}}+\frac{1}{4}\right)+\left(\frac{1}{y-2010}-\frac{1}{\sqrt{y-2010}}+\frac{1}{4}\right)+\left(\frac{1}{z-2011}-\frac{1}{\sqrt{z-2011}}+\frac{1}{4}\right)=0\)

\(\Leftrightarrow\left(\frac{1}{\sqrt{x-2009}}-\frac{1}{2}\right)^2+\left(\frac{1}{\sqrt{y-2010}}-\frac{1}{2}\right)^2+\left(\frac{1}{\sqrt{z-2011}}-\frac{1}{2}\right)^2=0\)

Xảy ra khi \(\hept{\begin{cases}\frac{1}{\sqrt{x-2009}}=\frac{1}{2}\\\frac{1}{\sqrt{y-2010}}=\frac{1}{2}\\\frac{1}{\sqrt{z-2011}}=\frac{1}{2}\end{cases}}\Rightarrow\hept{\begin{cases}\sqrt{x-2009}=2\\\sqrt{y-2010}=2\\\sqrt{z-2011}=2\end{cases}}\Rightarrow\hept{\begin{cases}x=2013\\y=2014\\z=2015\end{cases}}\)

28 tháng 9 2021

\(\dfrac{x-1}{2011}+\dfrac{x-2}{2010}-\dfrac{x-3}{2009}=\dfrac{x-4}{2008}\)

<=> \(\left(\dfrac{x-1}{2011}-1\right)+\left(\dfrac{x-2}{2010}-1\right)-\left(\dfrac{x-3}{2009}-1\right)=\left(\dfrac{x-4}{2008}-1\right)\)

<=> \(\dfrac{x-2012}{2011}+\dfrac{x-2012}{2010}-\dfrac{x-2012}{2009}-\dfrac{x-2012}{2008}=0\)

<=> \(\left(x-2012\right)\left(\dfrac{1}{2011}+\dfrac{1}{2010}-\dfrac{1}{2009}-\dfrac{1}{2008}\right)=0\)

<=> x - 2012 = 0

<=> x = 2012

28 tháng 9 2021

Hay lắm em

20 tháng 2 2017

Ta có: /x-2009/2009\(\ge\)0; (y-2010)2010=[(y-2010)1005]2 \(\ge\)0 và 2011/z-2011/\(\ge\)0

Tổng 3 số dương 0 khi và chỉ khi 3 số đó đều=0, khi đó dấu bằng xảy ra.
=> \(\hept{\begin{cases}Ix-2009I^{2009}=0\\\left(y-2010\right)^{2010}=0\\2011Iz-2011I=0\end{cases}}\)

=> x=2009; y=2010; z=2011

20 tháng 2 2017

x=2009

y=2010

z=2011

8 tháng 4 2015

−1x−2009+y−2010−−−−−−−√−1y−2010+z−2011−−−−−−−√−1z−2011=34

Ta có

x−2009−−−−−−−√−1x−2009+y−2010−−−−−−−√−1y−2010+z−2011−−−−−−−√−1z−2011=34⇔(1x−2009−−−−−−−√−12)2+(1y−2010−−−−−−−√−12)2+(1z−2011−−−−−−−√−12)2=0

 

 

⇒x=2013,y=2014,z=2015

 

8 tháng 7 2018

Thiếu điều kiện nhé

14 tháng 5 2019

Đặt: \(\hept{\begin{cases}\sqrt{x-2009}=a\\\sqrt{y-2010}=b\\\sqrt{z-2011}=c\end{cases}}\)

Ta có: \(\frac{1}{a}-\frac{1}{a^2}+\frac{1}{b}-\frac{1}{b^2}+\frac{1}{c}-\frac{1}{c^2}-\frac{3}{4}=0\)

\(\Leftrightarrow\frac{1}{a^2}-\frac{1}{a}+\frac{1}{b^2}-\frac{1}{b}+\frac{1}{c^2}-\frac{1}{c}+\frac{3}{4}=0\)

\(\Leftrightarrow\left(\frac{1}{a^2}-\frac{1}{a}+\frac{1}{4}\right)+\left(\frac{1}{b^2}-\frac{1}{b}+\frac{1}{4}\right)+\left(\frac{1}{c^2}-\frac{1}{c}+\frac{1}{4}\right)=0\)

\(\Leftrightarrow\left(\frac{1}{a}-\frac{1}{2}\right)^2+\left(\frac{1}{b}-\frac{1}{2}\right)^2+\left(\frac{1}{c}-\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow a=b=c=\frac{1}{2}\)

Thay vào tìm x;y;z

24 tháng 9 2019

Đặt: \(\hept{\begin{cases}\sqrt{x-2009}=a\\\sqrt{y-2010}=b\\\sqrt{z-2011}=c\end{cases}}\)

Ta có: \frac{1}{a}-\frac{1}{a^2}+\frac{1}{b}-\frac{1}{b^2}+\frac{1}{c}-\frac{1}{c^2}-\frac{3}{4}=0a1​−a21​+b1​−b21​+c1​−c21​−43​=0

\Leftrightarrow\frac{1}{a^2}-\frac{1}{a}+\frac{1}{b^2}-\frac{1}{b}+\frac{1}{c^2}-\frac{1}{c}+\frac{3}{4}=0⇔a21​−a1​+b21​−b1​+c21​−c1​+43​=0

\Leftrightarrow\left(\frac{1}{a^2}-\frac{1}{a}+\frac{1}{4}\right)+\left(\frac{1}{b^2}-\frac{1}{b}+\frac{1}{4}\right)+\left(\frac{1}{c^2}-\frac{1}{c}+\frac{1}{4}\right)=0⇔(a21​−a1​+41​)+(b21​−b1​+41​)+(c21​−c1​+41​)=0

\Leftrightarrow\left(\frac{1}{a}-\frac{1}{2}\right)^2+\left(\frac{1}{b}-\frac{1}{2}\right)^2+\left(\frac{1}{c}-\frac{1}{2}\right)^2=0⇔(a1​−21​)2+(b1​−21​)2+(c1​−21​)2=0

\Leftrightarrow a=b=c=\frac{1}{2}⇔a=b=c=21​

Thay vào tìm x;y;z

22 tháng 2 2017

Ta có: 

\(a_2^2=a_1.a_3;a_3^2=a_2.a_4;...;a^2_{2010}=a_{2009}.a_{2011}\)

\(\Rightarrow\frac{a_1}{a_2}=\frac{a_2}{a_3};\frac{a_2}{a_3}=\frac{a_3}{a_4};...;\frac{a_{2009}}{a_{2010}}=\frac{a_{2010}}{a_{2011}}\)

\(\Rightarrow\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=...=\frac{a_{2010}}{a_{2011}}\)

\(\Rightarrow\frac{a_1^{2010}}{a_2^{2010}}=\frac{a_2^{2010}}{a_3^{2010}}=...=\frac{a_{2010}^{2010}}{a_{2011}^{2010}}=\frac{a_1^{2010}+a_2^{2010}+...+a_{2010}^{2010}}{a_2^{2010}+a_3^{2010}+...+a_{2011}^{2010}}\) (1)

Ta lại có:

\(\frac{a_1^{2010}}{a_2^{2010}}=\frac{a_1}{a_2}.\frac{a_1}{a_2}...\frac{a_1}{a_2}=\frac{a_1}{a_2}.\frac{a_2}{a_3}...\frac{a_{2009}}{a_{2010}}.\frac{a_{2010}}{a_{2011}}=\frac{a_1}{a_{2011}}\)  (2)

Từ (1) và (2) ta suy ra 

\(\frac{a_1^{2010}+a_2^{2010}+...+a_{2010}^{2010}}{a_2^{2010}+a_3^{2010}+...+a_{2011}^{2010}}=\frac{a_1}{a_{2011}}\)

22 tháng 2 2017

Ta có :

\(a_2^2=a_1.a_3\Rightarrow\frac{a_1}{a_2}=\frac{a_2}{a_3}\)

\(a^2_3=a_2.a_4\Rightarrow\frac{a_2}{a_3}=\frac{a_3}{a_4}\)

\(............\)

\(a^2_{2010}=a_{2009}.a_{2011}\Rightarrow\frac{a_{2009}}{a_{2010}}=\frac{a_{2010}}{a_{2011}}\)

\(\Rightarrow\frac{a_1}{a_2}=\frac{a_2}{a_3}=........=\frac{a_{2009}}{a_{2010}}=\frac{a_{2010}}{a_{2011}}\)

Đặt \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=.......=\frac{a_{2010}}{a_{2011}}=k\)

\(\Rightarrow a_1=a_2.k\)

\(\Rightarrow a_1=a_3.k^2\)

\(\Rightarrow a_1=a_4.k^3\)

\(...............\)

\(\Rightarrow a_1=a_{2011}.k^{2010}\)

\(\Rightarrow\frac{a_1}{a_{2011}}=k^{2010}\) (1)

Ta có : \(k^{2010}=\left(\frac{a_1}{a_2}\right)^{2010}=\left(\frac{a_2}{a_3}\right)^{2010}=...=\left(\frac{a_{2010}}{a_{2011}}\right)^{2010}=\frac{a_1^{2010}}{a_2^{2010}}=\frac{a_2^{2010}}{a_3^{2010}}=....=\frac{a_{2010}^{2010}}{a_{2011}^{2010}}\)

\(=\frac{a_1^{2010}+a_2^{2010}+a_3^{2010}+....+a^{2010}_{2010}}{a_2^{2010}+a_3^{2010}+a_4^{2010}+....+a_{2011}^{2010}}\) ( theo TC DTSBN ) (2)

Từ (1) ; (2) \(\Rightarrow\frac{a_1^{2010}+a_2^{2010}+....+a_{2010}^{2010}}{a_2^{2010}+a_3^{2010}+....+a_{2011}^{2010}}=\frac{a_1}{a_{2011}}\) (đpcm)