K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2018

a) \(x^2-7x=0\)

\(\Leftrightarrow x\left(x-7\right)-0\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x-7=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x=7\end{cases}}\)

b)\(\left(x-1\right)^2=4\)

\(\Rightarrow\left(x-1\right)^2=2^2\)

\(\Rightarrow x-1=2\)

\(\Rightarrow x=3\)

12 tháng 4 2018

a.   x2- 7x = x2- 2x.\(\frac{7}{2}\)+ (\(\frac{7}{2}\))2 - (\(\frac{7}{2}\))= (x - \(\frac{7}{2}\))2 - (\(\frac{7}{2}\)) = (x - \(\frac{7}{2}\)-\(\frac{7}{2}\))(x-\(\frac{7}{2}\)+\(\frac{7}{2}\)) = (x - 7)x = 0

suy ra x=7 hoặc x=0

22 tháng 3 2020

Bài 1)1)\(x^2+5x+6=x^2+3x+2x+6\)=0

=x(x+3)+2(x+3)=(x+2)(x+3)=0

Dễ rồi

2)\(x^2-x-6=0=x^2-3x+2x-6=0\)

=x(x-3)+2(x-3)=0

=(x+2)(x-3)=0

Dễ rồi

3)Phương trình tương đương:\(\left(x^2+1\right)\left(x+2\right)^2=0\)

\(x^2+1>0\)

=>\(\left(x+2\right)^2=0\)

Dễ rồi

4)Phương trình tương đương\(x^2\left(x+1\right)+\left(x+1\right)\)=0

=> \(\left(x^2+1\right)\left(x+1\right)=0Vì\) \(x^2+1>0\)

=>x+1=0

=>..................

5)\(x^2-7x+6=x^2-6x-x+6\) =0

=x(x-6)-(x-6)=0

=(x-1)(x-6)=0

=>.....

6)\(2x^2-3x-5=2x^2+2x-5x-5\)=0

=2x(x+1)-5(x+1)=0

=(2x-5)(x+1)=0

7)\(x^2-3x+4x-12\)=x(x-3)+4(x-3)=(x+4)(x-3)=0

Dễ rồi

Nghỉ đã hôm sau làm mệt

18 tháng 2 2021

 a) 3x2 – 7x + 2

\(=3x^2-6x-x+2\)

\(=\left(3x^2-6x\right)-\left(x-2\right)\)

\(=3x\left(x-2\right)-\left(x-2\right)\)

\(=\left(x-2\right)\left(3x-1\right)\)

 b) a(x2 + 1) – x(a2 + 1)

\(=ax^2+a-\left(a^2x+x\right)\)

\(=a\left(x^2+1\right)-x\left(a^2+1\right)\)

.......?

 

 

 

 

a) Ta có: \(3x^2-7x+2\)

\(=3x^2-6x-x+2\)

\(=3x\left(x-2\right)-\left(x-2\right)\)

\(=\left(x-2\right)\left(3x-1\right)\)

b) Ta có: \(a\left(x^2+1\right)-x\left(a^2+1\right)\)

\(=x^2a+a-a^2x-x\)

\(=\left(x^2a-a^2x\right)+\left(a-x\right)\)

\(=xa\left(x-a\right)-\left(x-a\right)\)

\(=\left(x-a\right)\left(xa-1\right)\)

c) Ta có: \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

\(=\left(x^2+7x\right)^2+22\left(x^2+7x\right)+120-24\)

\(=\left(x^2+7x\right)^2+22\left(x^2+7x\right)+96\)

\(=\left(x^2+7x\right)^2+16\left(x^2+7x\right)+6\left(x^2+7x\right)+96\)

\(=\left(x^2+7x\right)\left(x^2+7x+16\right)+6\left(x^2+7x+16\right)\)

\(=\left(x^2+7x+16\right)\left(x^2+7x+6\right)\)

\(=\left(x^2+7x+16\right)\left(x+1\right)\left(x+6\right)\)

d) Ta có: \(\left(a+1\right)\left(a+3\right)\left(a+5\right)\left(a+7\right)+15\)

\(=\left(a^2+8a+7\right)\left(a^2+8a+15\right)+15\)

\(=\left(a^2+8a\right)^2+22\left(a^2+8a\right)+105+15\)

\(=\left(a^2+8a\right)^2+22\left(a^2+8a\right)+120\)

\(=\left(a^2+8a\right)^2+12\left(a^2+8a\right)+10\left(a^2+8a\right)+120\)

\(=\left(a^2+8a\right)\left(a^2+8a+12\right)+10\left(a^2+8a+12\right)\)

\(=\left(a^2+8a+12\right)\left(a^2+8a+10\right)\)

\(=\left(a+2\right)\left(a+6\right)\left(a^2+8a+10\right)\)

23 tháng 6 2019

5 tháng 2 2022

\(\left(x-1\right)^2=\left(x-1\right)^4\)

\(\Rightarrow\left(x-1\right)^4-\left(x-1\right)^2=0\)

\(\Rightarrow\left(x-1\right)^2\left[\left(x-1\right)^2-1\right]=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\left(x-1\right)^2=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x-1=1\\x-1=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\x=0\end{matrix}\right.\)

5 tháng 2 2022

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

 

1 tháng 9 2021

a = |2x-1/3|-7/4

   Do |2x-1/3| \(\ge\) 0

         |2x-1/3|-7/4 \(\ge\)  7/4 

Dấu = xảy ra <=> 2x-1/3=0. =>. x= 1/6

b    1/3|x-2|+2|3-1/2 y|+4

 Do |x-2| \(\ge\) 0

      |3-1/2y| \(\ge\) 0

   => 1/3|x-2|+2|3-1/2 y|+4 \(\ge\) 4

Dấu = xảy ra <=>\(\left\{{}\begin{matrix}x-2=0\\3-\dfrac{1}{2}y=0\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}x=2\\y=6\end{matrix}\right.\)

a: Ta có: \(\left|2x-\dfrac{1}{3}\right|\ge0\forall x\)

\(\Leftrightarrow\left|2x-\dfrac{1}{3}\right|-\dfrac{7}{4}\ge-\dfrac{7}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{6}\)

b: Ta có: \(\dfrac{1}{3}\left|x-2\right|\ge0\forall x\)

\(2\left|3-\dfrac{1}{2}y\right|\ge0\forall y\)

Do đó: \(\dfrac{1}{3}\left|x-2\right|+2\left|3-\dfrac{1}{2}y\right|\ge0\forall x,y\)

\(\Leftrightarrow\left|x-2\right|\cdot\dfrac{1}{3}+\left|3-\dfrac{1}{2}y\right|\cdot2+4\ge4\forall x,y\)

Dấu '=' xảy ra khi x=2 và y=6

Về học lại hằng đẳng thức nha .-.

\(\Leftrightarrow\dfrac{\left(x+2\right)+5}{2-x}=\dfrac{2x-3}{\left(x-2\right)\left(x+2\right)}\\ \Leftrightarrow-\left(x+2\right)+5\left(x+2\right)=2x-3\\ \Leftrightarrow6x+12-2x+3=0\\ \Leftrightarrow4x+15=0\\ \Leftrightarrow x=\dfrac{-15}{4}\)

12 tháng 4 2022

\(\dfrac{1}{x+2}+\dfrac{5}{2-x}=\dfrac{2x-3}{x^2-4}\)

\(\Leftrightarrow\dfrac{1}{x+2}-\dfrac{5}{x-2}-\dfrac{2x-3}{\left(x-2\right)\left(x+2\right)}=0\left(đk:x\ne\pm2\right)\)

\(\Leftrightarrow\dfrac{x-2-5\left(x+2\right)-2x-3}{\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow x-2-5x-10-2x-3=0\)

\(\Leftrightarrow-6x-15=0\)

\(\Leftrightarrow-6x=15\)

\(\Leftrightarrow x=-\dfrac{15}{6}\left(n\right)\)

Vậy \(S=\left\{-\dfrac{15}{6}\right\}\)

12 tháng 4 2022

\(\dfrac{1}{x+2}+\dfrac{5}{2-x}=\dfrac{2x-3}{x^2-4}\) đkxđ : x khác 2 , x khác -2.

<=> \(\dfrac{1}{x+2}-\dfrac{5}{x-2}-\dfrac{2x-3}{x^2-4}=0\)

<=> \(\dfrac{1.\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\dfrac{5.\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{2x-3}{\left(x-2\right)\left(x+2\right)}=0\)

<=> \(\dfrac{x-2}{\left(x+2\right)\left(x-2\right)}-\dfrac{5x+10}{\left(x-2\right)\left(x+2\right)}-\dfrac{2x-3}{\left(x-2\right)\left(x+2\right)}=0\)

<=>\(x-2-5x-10-2x+3=0\)

<=> \(-6x-9=0\)

<=> \(x=-\dfrac{9}{6}=-\dfrac{3}{2}\left(nhận\right)\)

Vậy pt có nghiệm \(S=\left\{-\dfrac{3}{2}\right\}\)