CM : 1/2 - 2/(22) + 3/(23) - ...+99/(299) - 100/(2100) < 2/9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2^{100}-2^{99}+2^{98}-2^{97}+....-2^3+2^2-2+1\\ A=\left(2^{100}+2^{98}+...+2\right)-\left(2^{99}+2^{97}+...+1\right)\)
Gọi \(\left(2^{100}+2^{98}+...+2\right)\)là B
\(B=\left(2^{100}+2^{98}+...+2\right)\\ 2B=2^{102}+2^{100}+.....+2^2\\ 2B-B=\left(2^{102}+2^{100}+.....+2^2\right)-\left(2^{100}+2^{98}+...+2\right)\\ B=2^{102}-2\)
Gọi \(\left(2^{99}+2^{97}+...+1\right)\) là C
\(C=\left(2^{99}+2^{97}+...+1\right)\\ 2C=2^{101}+2^{99}+....+2\\ 2C-C=\left(2^{101}+2^{99}+9^{97}+...+2\right)-\left(2^{99}+9^{97}+...+1\right)\\ C=2^{101}-1\)
\(A=B+C\\ =>A=2^{102}-2+2^{101}-1\\ A=2^{101}\left(2+1\right)-3\\ A=2^{101}\cdot3-3\\ A=3\cdot\left(2^{101}-1\right)\)
\(\dfrac{1}{2}A=2^{99}-2^{98}+...-1+\dfrac{1}{2}\\ \Rightarrow A-\dfrac{1}{2}A=2^{100}-\dfrac{1}{2}\\ \Rightarrow A=2^{101}-1\)
a) \(A=1+2+2^2+...+2^{50}\)
\(\Rightarrow2A=2+2^2+...+2^{51}\)
\(\Rightarrow A=2A-A=2+2^2+...+2^{51}-1-2-2^2-...-2^{50}=2^{51}-1\)
b) \(B=1+3+3^2+...+3^{100}\)
\(\Rightarrow3B=3+3^2+...+3^{101}\)
\(\Rightarrow2B=3B-B=3+3^2+...+3^{101}-1-3-3^2-...-3^{100}=3^{101}-1\)
\(\Rightarrow B=\dfrac{3^{101}-1}{2}\)
c) \(C=5+5^2+...+5^{30}\)
\(\Rightarrow5C=5^2+5^3+...+5^{31}\)
\(\Rightarrow4C=5C-C=5^2+5^3+...+5^{31}-5-5^2-...-5^{30}=5^{31}-5\)
\(\Rightarrow C=\dfrac{5^{31}-5}{4}\)
d) \(D=2^{100}-2^{99}+2^{98}-...+2^2-2\)
\(\Rightarrow2D=2^{101}-2^{100}+2^{99}-...+2^3-2^2\)
\(\Rightarrow3D=2D+D=2^{101}-2^{100}+2^{99}-...+2^3-2^2+2^{100}-2^{99}+...+2^2-2=2^{101}-2\)
\(\Rightarrow D=\dfrac{2^{101}-2}{3}\)
Có : \(S=1+2+2^2+2^3+....+2^{99}\)
\(\Rightarrow2S=2+2^2+2^3+....+2^{100}\)
\(\Rightarrow2S-S=\left(2+2^2+2^3+...+2^{100}\right)-\left(1+2+2^2+....+2^{99}\right)\)
\(\Rightarrow S=2^{100}-1< 2^{100}\)
Vậy \(S< 2^{100}\)
S=1+2+22+23+....+299
⇒2S=2+22+23+....+2100
⇒2S−S=2100-1
S=2100-1
vì 2100 -1<2100
⇒S<2100
\(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)
\(\Rightarrow2A=2^2+2^3+2^4+...+2^{100}+2^{101}\)
\(\Rightarrow A=2A-A=2^2+2^3+2^4+...+2^{100}+2^{101}-2-2^2-2^3-2^4-...-2^{99}-2^{100}=2^{101}-2\)
a, Ta có :
A = 1 + 2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100
2A = 2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100 + 2 101
A = 2A – A = ( 2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100 + 2 101 ) –( 1 + 2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100 )
= 2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100 + 2 101 – 1 - 2 - 2 2 - 2 3 - 2 4 - . . . - 2 99 - 2 100
= 2 101 - 1
Vậy A = 2 101 - 1
b, Ta có.
B = 5 + 5 3 + 5 5 + . . . + 5 97 + 5 99
5 2 B = 5 2 ( 5 + 5 3 + 5 5 + . . . + 5 97 + 5 99 )
25B = 5 3 + 5 5 + . . . + 5 97 + 5 99 + 5 101
25B – B = ( 5 3 + 5 5 + . . . + 5 97 + 5 99 + 5 101 ) – ( 5 + 5 3 + 5 5 + . . . + 5 97 + 5 99 )
24B = 5 3 + 5 5 + . . . + 5 97 + 5 99 + 5 101 – 5 - 5 3 - 5 5 - . . . - 5 97 - 5 99
24B = 5 101 - 5
B = 5 101 - 5 24 = 5 5 100 - 1 24
Vậy B = 5 5 100 - 1 24
a: \(\left[600-\left(40:2^3+3\cdot5^3\right)\right]:5\)
\(=\left[600-5-375\right]:5\)
\(=44\)
b: \(16\cdot12^2-\left(4\cdot23^2-59\cdot4\right)\)
\(=16\cdot144-4\cdot\left(23^2-59\right)\)
\(=2304-4\cdot470\)
\(=424\)
c: Ta có: \(2^{100}-\left(1+2+2^2+2^3+...+2^{99}\right)\)
\(=2^{100}-2^{100}+1\)
=1
d: Ta có: \(169\cdot2011^0-17\cdot\left(83-1702:23+1^{2012}\right)+2^7:2^4\)
\(=169-17\cdot\left(83-74+1\right)+2^3\)
\(=177-17\cdot10\)
=7