Chứng minh rằng :
1 < \(\frac{a}{a+b}\)+ \(\frac{b}{b+c}\) + \(\frac{c}{c+a}\)< 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{b+a}{b+c+b}+\frac{c+b}{c+a+b}=2=VT\)
ta có:
a/a+b>a/a+b+c
b/b+c>b/a+b+c
c/a+c>c/a+b+c
cộng vế theo vế ta có
a/a+b +b/b+c +c/c+a > a+b+c / a+b+c =1
=>a/a+b +b/b+c +c/c+a >1 (*)
lại có
a/a+b< a+c/a+b+c
b/b+c < b+a / a+b+c
c/c+b < c+b/a+b+c
cộng vế theo vế ta có
a/a+b + b/b+c +c/c+a < 2(a+b+c)/ a+b+c
vì a,b,c là các số dương nên a/a+b + b/b+c +c/c+a < 2 (**)
từ (*) và (**) => ĐPCM
mik chắc chắn bài này chuẩn đúng 100% nhớ cho mik 5 sao nha
Vì a;b;c là các số dương nên \(\frac{a}{a+b}>\frac{a}{a+b+c};\frac{b}{b+c}>\frac{b}{a+b+c};\frac{c}{a+c}>\frac{c}{a+b+c}\)
=>\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)(1)
Ta có: a<a+b <=> ac<ac+bc <=> ac+a2+ab<ac+bc+a2+ab
<=> \(a\left(c+a+b\right)< \left(a+b\right)\left(c+a\right)\Leftrightarrow\frac{a}{a+b}< \frac{a+c}{a+b+c}\)
Chứng minh tương tự được : \(\frac{b}{b+c}< \frac{a+b}{a+b+c};\frac{c}{a+c}< \frac{b+c}{a+b+c}\)
=>\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}< \frac{a+c}{a+b+c}+\frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}=2\) (2)
Từ (1) và (2) => đpcm
Do \(a,b,c\) nguyên dương nên \(\left(a,b,c\right)=\left(0;0;0\right),\left(0;0;1\right);\left(0;1;1\right);\left(1;1;1\right)\)
Thử vào biểu thức bên trái đều thấy nó có giá trị nhỏ hơn hoặc bằng 2.
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\Rightarrow1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)