K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2018

\(a^2+b^2+c^2\ge ab+bc+ac\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\) (BĐT đúng)

Vì \(\left(a-b\right)^2\ge0\)

      \(\left(b-c\right)^2\ge0\)

        \(\left(a-c\right)^2\ge0\)

10 tháng 4 2018

Xin chào chú tus, tôi sẽ đem đến cho bạn 1 cách giải ko dài dòng như MMS_Hồ Khánh Châu.

\(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\left(\text{luon dung}\right)\left(đ\text{pcm}\right)\)

P/s: Ko có ý j đâu :)

1 tháng 9 2020

Câu a bạn chứng minh được rồi là xong nha !!!!!!!

Câu b) 

\(B=\frac{\left(a+b+c\right)^2}{ab+bc+ca}+\frac{ab+bc+ca}{\left(a+b+c\right)^2}\)

\(B=\frac{\left(a+b+c\right)^2}{9\left(ab+bc+ca\right)}+\frac{ab+bc+ca}{\left(a+b+c\right)^2}+\frac{8\left(a+b+c\right)^2}{9\left(ab+bc+ca\right)}\)

Ta lần lượt áp dụng BĐT Cauchy 2 số và sử dụng câu a sẽ được: 

=>   \(B\ge2\sqrt{\frac{\left(a+b+c\right)^2\left(ab+bc+ca\right)}{9\left(ab+bc+ca\right)\left(a+b+c\right)^2}}+\frac{8.3\left(ab+bc+ca\right)}{9\left(ab+bc+ca\right)}\)

=>   \(B\ge\frac{2}{3}+\frac{8}{3}=\frac{10}{3}\)

DẤU "=" Xảy ra <=>    \(a=b=c\)

Vậy ta có ĐPCM !!!!!!!!

28 tháng 2 2016

e cu len day hoi chi zay

17 tháng 9 2019

Giả sử :\(a^2+b^2+c^2\ge ab+bc+ac\forall a,b,c\)

Ta có:

\(2a^2+2b^2+2c^2\ge2ab+2ac+2bc\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\)(luôn đúng với mọi a,b,c)

=> đpcm

17 tháng 9 2019

Nhân 2 vế cho 2, sau đó chuyển hết VP qua VT, BĐT đã cho tương đương với BĐT (a-b)^2 + (b-c)^2 + (a-c)^2 >=0 luôn đúng

27 tháng 1 2020

Rất dễ dàng, chúng ta có:

\(VT-VP=\frac{2ab\left[\left(a+bc-b-c\right)^2+\left(c-1\right)^2\right]+c\left(b-1\right)^2\left[\left(a+b-c\right)^2+1\right]}{2ab+c\left(b-1\right)^2}\ge0\)

Đẳng thức xảy ra khi \(a=b=c=1\). Ta có đpcm.

27 tháng 1 2020

Anh tth bày em didéplê mak e ko có bt đi nên dùng dirichlet tạm vậy.......

Trong 3 số \(a-1;b-1;c-1\) có ít nhất 2 số cùng dấu,giả sử đó là \(a-1;b-1\)

\(\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab-a-b+1\ge0\Rightarrow abc-ac-bc+c\ge0\)

\(a^2+b^2+c^2+2abc+1=\left(a-b\right)^2+\left(1-c\right)^2+2\left(ab+bc+ca\right)+2\left(abc-ac-bc+c\right)\)

Rất dễ thấy \(\left(a-b\right)^2\ge0;\left(1-c\right)^2\ge0;2\left(abc-ac-bc+c\right)\ge0\)

\(\Rightarrowđpcm\)

4 tháng 8 2019

\(0< a,b,c< 1\)\(\Rightarrow\)\(\hept{\begin{cases}ab< a;a^2< a\\bc< b;b^2< b\\ca< c;c^2< c\end{cases}}\)

\(a\ge b\ge c\)

\(\frac{1}{3}\le a< 1\Rightarrow\left(a-\frac{1}{3}\right)\left(a-1\right)\le0\)

\(\Rightarrow\)\(\frac{3}{ab+bc+ca}+\frac{2}{a^2+b^2+c^2}\ge\frac{\left(\sqrt{6}+\sqrt{2}\right)^2}{\left(a+b+c\right)^2}=\left(\sqrt{6}+\sqrt{2}\right)^2>14\)

4 tháng 8 2019

aaaaaaaa bỏ mấy đoạn trên đi nha >_< vẽ bùa đó, lấy mỗi đoạn dưới thôi 

14 tháng 3 2018

Do: \(a^2+b^2+c^2=1\text{ nen }a^2\le1,b^2\le1,c^2\le1\)

\(\Rightarrow a\ge-1;b\ge-1;c\ge-1\)

\(\Rightarrow\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge0\)

\(\Rightarrow1+a+b+c+ab+bc+ca+abc\ge0\)

Cần C/m:

\(1+a+b+c+ab+bc+ca\ge0\)

Ta có: 

\(1+a+b+c+ab+bc+ca\ge0\)

\(\Leftrightarrow a^2+b^2+c^2+ab+bc+ca+a+b+c\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2+2\left(a+b+c\right)+2ab+2bc+2ca+abc\ge0\)

\(\Leftrightarrow\left(a+b+c\right)^2+2\left(a+b+c\right)+1\ge0\)

\(\Leftrightarrow\left(a+b+c+1\right)^2\ge0\left(\text{luon dung}\right)\)

=> ĐPCM

14 tháng 3 2018

Bấm vào câu hỏi tương tự 

hoặc lên Học24h