K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2016

1/

-x^3 -5x^2 + 4x +4

=> x1 =-5.5877............

    x2=1.1895.............

    x3=-0.6018............

a) Ta có: \(x^3-9x^2+19x-11=0\)

\(\Leftrightarrow x^3-x^2-8x^2+8x+11x-11=0\)

\(\Leftrightarrow x^2\left(x-1\right)-8x\left(x-1\right)+11\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-8x+11\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x^2-8x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\sqrt{5}+4\\x=-\sqrt{5}+4\end{matrix}\right.\)

Vậy: \(S=\left\{1;\sqrt{5}+4;-\sqrt{5}+4\right\}\)

11 tháng 2 2023

\(\left(x+2\right)^3-16\left(x+2\right)=0\)

\(\Rightarrow\left(x+2\right)\left[\left(x+2\right)^2-16\right]=0\)

\(\Rightarrow\left(x+2\right)\left(x+2-4\right)\left(x+2+4\right)=0\)

\(\Rightarrow\left(x+2\right)\left(x-2\right)\left(x+6\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x-2=0\\x+6=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=2\\x=-6\end{matrix}\right.\)

Vậy \(S=\left\{-2;2;-6\right\}\)

\(2x^3-6x^2+12x-8=0\)

\(\Rightarrow2x^3-2x^23+3.2^2-2^3=0\)

\(\Rightarrow\left(x-2\right)^3=0\)

\(\Rightarrow x-2=0\)

\(\Rightarrow x=2\)

9 tháng 3 2021

Bài 1:

\(D=\dfrac{5x^2-30x+53}{x^2-6x+10}=\dfrac{5\left(x^2-6x+10\right)+3}{x^2-6x+10}=5+\dfrac{3}{x^2-6x+10}\)

\(=5+\dfrac{3}{\left(x-3\right)^2+1}\)

Ta có: \(\left(x+3\right)^2+1\ge1\Rightarrow\dfrac{3}{\left(x-3\right)^2+1}\le3\)

\(\Rightarrow D\le3+5=8\)

Vậy max D= 8 <=> x=3

Bài 2: 

\(8\left(x-3\right)^3+x^3=6x^2-12x+8\)

\(\Leftrightarrow\left[2\left(x-3\right)^3\right]=-x^3+3.2x^2-3.2^2x+2^3\)

\(\Leftrightarrow\left(2x-6\right)^3=\left(2-x\right)^3\)

\(\Leftrightarrow2x-6=2-x\)

\(\Leftrightarrow3x=8\Leftrightarrow x=\dfrac{8}{3}\)

Vậy tập nghiệm : \(S=\left\{\dfrac{8}{3}\right\}\)

18 tháng 12 2020

ĐKXĐ: \(x\ge1\).

Phương trình đã cho tương đương:

\(\sqrt{x+3}+\sqrt{x-1}=\dfrac{8}{\sqrt{4x^4-12x^3+9x^2+16}-\left(2x^2-3x\right)}\)

\(\Leftrightarrow\sqrt{x+3}+\sqrt{x-1}=\dfrac{\sqrt{4x^4-12x^3+9x^2+16}+\left(2x^2-3x\right)}{2}\)

\(\Leftrightarrow\sqrt{4x^4-12x^3+9x^2+16}+\left(2x^2-3x\right)-2\sqrt{x+3}-2\sqrt{x-1}=0\)

\(\Leftrightarrow\left(\sqrt{4x^4-12x^3+9x^2+16}-2\sqrt{x+3}\right)+\left(2x^2-3x-2\sqrt{x-1}\right)=0\)

\(\Leftrightarrow\dfrac{4x^4-12x^3+9x^2-4x+4}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{4x^4-12x^3+9x^2-4x+4}{2x^2-3x+2\sqrt{x-1}}=0\)

\(\Leftrightarrow\left(x-2\right)\left(4x^3-4x^2+x-2\right)\left(\dfrac{1}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{1}{2x^2-3x+2\sqrt{x-1}}\right)=0\).

Do \(x\ge1\) nên ta có \(\dfrac{1}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{1}{2x^2-3x+2\sqrt{x-1}}>0\).

Do đó \(\left[{}\begin{matrix}x-2=0\Leftrightarrow x=2\left(TMĐK\right)\\4x^3-4x^2+x-2=0\left(1\right)\end{matrix}\right.\).

Giải phương trình bậc 3 ở (1) ta được \(x=\dfrac{\sqrt[3]{36\sqrt{13}+53\sqrt{6}}}{\sqrt[6]{279936}}+\dfrac{1}{\sqrt[6]{7776}\sqrt[3]{36\sqrt{13}+53\sqrt{6}}}+\dfrac{1}{3}\approx1,157298106\left(TMĐK\right)\).

Vậy...

 

 

 

18 tháng 12 2020

Vì trong bài làm của mình có một số dòng khá dài nên bạn có thể vào trang cá nhân của mình để đọc tốt hơn!

12 tháng 1 2016

(x+2)^3-(x-2)^3=12x(x-1)-8

<=>x^3+6x^2+12x+8-x^3+6x^2-12x+8=12x^2-12x-8

<=>12x^2+16=12x^2-12x-8

<=>12x+24=0

<=>x=-24/12=-2

Vậy S={-2}

tick nha các bạn

12 tháng 1 2016

 

(x+2)^3-(x-2)^3=12x(x-1)-8

<=>x3+6x2+12x+8-x3+6x2-12x+8=12x2-12x-8

<=>12x2+16=12x2-12x-8

<=>12x+24=0

<=>x=-24/12=-2

Vậy S={-2}

1 tháng 5 2017

(x+2)3-(x-2)3=12x(x-1)-8

<=> x3+6x2+12x+8-x3+6x2-12x+8=12x2-12x-8

<=>12x2+16=12x2-12x-8

<=>12x=-24

<=>x=-2

\(\left(x+2\right)^3-\left(x-2\right)^3=12x\left(x-1\right)-8\)

\(\left(x^3+6x^2+12x+8\right)-\left(x^3-6x^2+12x-8\right)=12x^2-12x-8\)

\(x^3+6x^2+12x+8-x^3+6x^2-12x+8=12x^2-12x-8\)

\(12x^2+16-12x^2+12x+8=0\)

\(24+12x=0\Leftrightarrow12x=-24\Leftrightarrow x=-2\)

11 tháng 9 2015

Phần b. Nhân cả hai vế với 3 ta được \(3x^3-3x^2-3x=1\to4x^3=x^3+3x^2+3x+1\to4x^3=\left(x+1\right)^3\to\sqrt[3]{4}x=x+1\)

\(\to\left(\sqrt[3]{4}-1\right)x=1\to x=\frac{1}{\sqrt[3]{4}-1}\)