Cho ab>0 và a,b dương và ab=6. CM: (a^2+b^2)/|a-b| >=4√3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta lấy : a,b > 0 ta có a,b > 0 ta làm a.b > 0 sẽ bằng 0 - 2 = âm 2 [ a,b] =240 và 16 ta lấy 240 - 16 + - 2 = 222
ta có : 240 -16 = 224 = 224 + 222 = 446
nguyenhuyen
Ta có
\(4a^2+b^2=5ab\)
\(\Leftrightarrow4a^2-4ab+b^2-ab=0\)
\(\Leftrightarrow4a\left(a-b\right)-b\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(4a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a-b=0\\4a-b=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a=b\\4a=b\end{cases}}\)
\(TH1:a=b\)
\(\Leftrightarrow\frac{a^2}{4a^2-a^2}=\frac{a^2}{3a^2}=\frac{1}{3}\)
\(TH2:4a=b\)
\(\Leftrightarrow\frac{4a^2}{4a^2-16a^2}=\frac{4a^2}{-12a^2}=\frac{-1}{3}\)
Vậy...............
k mk nha
a)(2x2-x-3)2-7(2x2-x-3)+42=0
Đặt 2x2-x-3=t ta được:
t2-7t+42=0
<=>t2-7t+12,25+29,75=0
<=>(t-3,5)2+29,75=0(vô lí)
b)Ta có:(a-b)2\(\ge\)0
<=>a2-2ab+b2\(\ge\)0
<=>a2+b2\(\ge\)2ab(1)
Dấu "=" xảy ra khi và chỉ khi a-b=0<=>a=b
Tương tự ta có:
b2+c2\(\ge\)2bc(2)
c2+a2\(\ge\)2ca(3)
cộng vế với vế 1 , 2 và 3 ta có:
2(a2+b2+c2)\(\ge\)2(ab+bc+ca)(*)
<=>a2+b2+c2\(\ge\)ab+bc+ca
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)<=>a=b=c
Từ (*) =>3(a2+b2+c2)\(\ge\)2(ab+bc+ca)+a2+b2+c2=(a+b+c)2
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)<=>a=b=c
a)\(\frac{a+b}{2}\ge\sqrt{ab}\)
\(\Rightarrow a+b\ge2\sqrt{ab}\)
\(\Rightarrow a+b-2\sqrt{ab}\ge0\)
\(\Rightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) với mọi x
->Đpcm
2 phần kia mai tui lm nốt cho h đi ngủ