K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2018

Ta có: \(\left(x-y\right)^2\ge0\)

\(\Leftrightarrow x^2+y^2\ge2xy\)

\(\Leftrightarrow2x^2+2y^2\ge\left(x+y\right)^2\)

\(\Leftrightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)

Mà x+y>1 \(\Rightarrow x^2+y^2>\frac{1}{2}\)

8 tháng 4 2018

Ta có:  x − y 2 ≥ 0

⇔x 2 + y 2 ≥ 2xy

⇔2x 2 + 2y 2 ≥ x + y 2

⇔x 2 + y 2 ≥ 2 x + y 2

Mà x+y>1 

⇒x 2 + y 2 > 2

10 tháng 5 2017
x^2 + y^2 + x^2 >= 1/3
<=> x^2 + y^2 + x^2 >= (x + y + z)/3 ( vì x + y + z = 1)
<=> x^2 + y^2 + x^2 - (x + y + z)/3 >= 0
<=> 3x^2 + 3y^2 + 3z^2 - x - y - z >= 0
<=> x(3x - 1) + y(3y - 1) + z(3z - 1) >= 0
<=> x(3x - x - y - z) + y(3y - x - y - z) + z(3z - x - y - z) >= 0
<=> x(2x - y - z) + y(2y - x -z) + z(2z - x - y) >= 0
<=> 2x^2 - xy - xz + 2y^2 - xy - yz + 2z^2 - xz - yz >= 0
<=> (x^2 - 2xy - y^2) + (y^2 - 2yz - z^2) + (x^2 - 2xz - z^2) >= 0
<=> (x - y)^2 + (y - z)^2 - (x - z)^2 >= 0 (đúng)
=> x^2 + y^2 + x^2 >= 1/3

Dấu = xảy ra <=> x = y = z =1/3
10 tháng 5 2017

Cách làm của Nguyễn Đặng Thanh Trúc hơi dài , mik làm cchs khác nhé :

==================

Áp dụng BDDT Co- si dạng engel

Ta có : x2 + y2 + z2 \(\ge\dfrac{\left(x+y+z\right)^2}{1+1+1}=\dfrac{1}{3}\)

Dấu "=" xảy ra khi : x=y=z =1/3

14 tháng 1 2017

CMR : a) Có thể tìm được số có dạng 199119911991...19910...0 chia hết cho 1992

Help

25 tháng 4 2018

khong dung bdt cosi nhe

25 tháng 4 2018

bài này ko dùng cô-si nhé, đề chỉ cho x,y là số thực và thỏa mãn \(xy\ge1\) chứ ko nói j đến dương, tham khảo bài lm của mk nhé:

                                BÀI LÀM

       \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)

\(\Leftrightarrow\)\(\frac{1}{1+x^2}-\frac{1}{1+xy}+\frac{1}{1+y^2}-\frac{1}{1+xy}\ge0\)

\(\Leftrightarrow\)\(\frac{1+xy-1-x^2}{\left(1+x^2\right)\left(1+xy\right)}+\frac{1+xy-1-y^2}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow\)\(\frac{x\left(y-x\right)}{\left(1+x^2\right)\left(1+xy\right)}+\frac{y\left(x-y\right)}{\left(1+x^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow\) \(\frac{x\left(y-x\right)\left(1+y^2\right)}{\left(1+x^2\right)\left(1+xy\right)\left(1+y^2\right)}+\frac{y\left(x-y\right)\left(1+x^2\right)}{\left(1+xy\right)\left(1+y^2\right)\left(1+x^2\right)}\ge0\)

\(\Leftrightarrow\)\(\frac{\left(y-x\right)\left(x+xy^2-y-x^2y\right)}{\left(1+xy\right)\left(1+x^2\right)\left(1+y^2\right)}\ge0\)

\(\Leftrightarrow\)\(\frac{\left(y-x\right)\left(x-y\right)\left(1-xy\right)}{\left(1+xy\right)\left(1+x^2\right)\left(1+y^2\right)}\ge0\)

\(\Leftrightarrow\)\(\frac{\left(x-y\right)^2\left(xy-1\right)}{\left(1+xy\right)\left(1+x^2\right)\left(1+y^2\right)}\ge0\)

đến đây bn tự giải thích và làm tiếp nhé

CÁCH 2:    \(VT=\frac{1}{1+x^2}+\frac{1}{1+y^2}=\frac{2+x^2+y^2}{1+y^2+x^2+x^2y^2}\)

Ta luôn có:   \(\left(a-b\right)^2\ge0\) \(\Leftrightarrow\)\(a^2-2ab+b^2\ge0\)\(\Leftrightarrow\)\(a^2+b^2\ge2ab\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(a=b\)

Áp dụng BĐT trên ta có:   \(x^2+y^2\ge2xy\) mà   \(xy\ge1\) nên  \(x^2+y^2\ge2\)

\(xy\ge1\)  \(\Rightarrow\)\(\left(xy\right)^2=x^2y^2\ge1\)

Khi đó:    \(VT=\frac{1}{1+x^2}+\frac{1}{1+y^2}=\frac{1+x^2+y^2}{1+x^2+y^2+x^2y^2}\ge\frac{2xy+1}{2xy+1+1}\ge\frac{2+2}{2xy+2}=\frac{4}{2\left(xy+1\right)}=\frac{2}{1+xy}\)

\(\Rightarrow\)\(VT\ge\frac{2}{1+xy}\)hay   \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\) (đpcm)

27 tháng 5 2018

\(VT=6\left(x^2+y^2+z^2\right)+10\left(xy+yz+xz\right)+2\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\)

\(=6\left(x+y+z\right)^2-2\left(xy+yz+xz\right)+2\frac{9}{2x+y+z+x+2y+z+x+y+2z}\)

\(\ge6\left(x+y+z\right)^2-2\frac{\left(x+y+z\right)^2}{3}+2\frac{9}{4\left(x+y+z\right)}\)

\(=\: 6\cdot\left(\frac{3}{4}\right)^2-2\cdot\frac{\left(\frac{3}{4}\right)^2}{3}+2\cdot\frac{9}{4\cdot\frac{3}{4}}=9\)

9 tháng 8 2017

2) Ta có:

\(\frac{1}{xy}+\frac{2}{x^2+y^2}=2\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\)

Áp dụng BĐT Schwarz:

\(\frac{1}{2xy}+\frac{1}{x^2+y^2}\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}=\frac{4}{\left(x+y\right)^2}\)

Mà x+y=1 nên suy ra:

\(\frac{1}{2xy}+\frac{1}{x^2+y^2}\ge4\)

\(\Rightarrow2\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\ge8\)

=>đpcm.

Dấu ''='' xảy ra khi x=y=1/2

AH
Akai Haruma
Giáo viên
6 tháng 7 2021

Bạn cần viết đề bằng công thức toán để được hỗ trợ tốt hơn.

27 tháng 10 2018

Bạn xem lại đề nhé: Ví dụ chọn x=2, y=1 ta có: 22-4.2.1+1+2=-1<0 

20 tháng 2 2018

Chuyển vế biến đổi tương đương

\(\frac{1}{1+x^2}-\frac{1}{xy+1}+\frac{1}{1+y^2}-\frac{1}{xy+1}\ge0\)