K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2018

Có A = 1/1+3 + 1/1+3+5 + ... + 1/1+3+...+101

A = 1/4 + 1/9 + ... + 1/2601

A = 1/2² + 1/3² + ... + 1/51²

Lại có: 1/3² < 1/2.3 = 1/2 - 1/3 ; ... ; 1/51² < 1/50.51 = 1/50 - 1/51

=> A = 1/1+3 + 1/1+3+5 + ... + 1/1+3+...+101 < 1/4 + 1/2 - 1/3 + ... + 1/50 - 1/51

=> A < 1/4 + 1/2 - 1/51 = 3/4 - 1/51 < 3/4

=> A < 3/4 (đpcm)

8 tháng 8 2020

Giúp mình nha. Bài cuối cùng của đề toán dài 36 bài của mình đó

8 tháng 8 2020

\(A=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

Mà \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}< 1\)

Nên từ đây => \(A< 1\)     (ĐPCM)

25 tháng 2 2017

2.a) Vào question 126036

b) Vào question 68660

15 tháng 8 2019

\(B=\frac{1}{1+3}+\frac{1}{1+3+5}+...+\frac{1}{1+3+...+101}\)

\(B=\frac{1}{4}+\frac{1}{9}+...+\frac{1}{51}\)

\(B=\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+...+\frac{1}{3\cdot17}\)

\(B=\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+...+\frac{1}{3}-\frac{1}{17}\)

\(B=\frac{1}{2}-\frac{1}{17}\)

\(B=\frac{15}{34}\)

TU DO \(=>\frac{15}{34}< \frac{3}{4}\)HOAC \(B< \frac{3}{4}\)

 CHUC BAN HOC TOT :)) 

21 tháng 8 2019

Ta có: \(1+3=\frac{\left(1+3\right).\left[\left(3-1\right):2+1\right]}{2}=\frac{4.2}{2}=2.2\)

\(1+3+5=\frac{\left(1+5\right).\left[\left(5-1\right):2+1\right]}{2}=\frac{6.3}{2}=3.3\)

                  \(.................\)

\(1+3+5+...+101=\frac{\left(1+101\right).\left[\left(101-1\right):2+1\right]}{2}=\frac{102.5}{2}=51.51\)

\(\Rightarrow B=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{51.51}\)

\(\Rightarrow B< \frac{1}{2.2}+\frac{1}{2.3}+...+\frac{1}{50.51}=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{50}-\frac{1}{51}\)

\(\Rightarrow B< \left(\frac{1}{4}+\frac{1}{2}\right)-\frac{1}{51}\)

\(\Rightarrow B< \frac{3}{4}-\frac{1}{51}< \frac{3}{4}\)

\(\Rightarrow B>\frac{3}{4}\left(đpcm\right)\)