K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2016

Ta có

\(\frac{x^2+4y^2}{x-2y}=\frac{x^2+4y^2-4xy+4xy}{x-2y}=\frac{\left(x-2y\right)^2}{x-2y}+\frac{4}{x-2y}\)

\(=x-2y+\frac{4}{x-2y}\)

Áp dụng bđt Cauchy cho hai số không âm, ta có

\(x-2y+\frac{4}{x-2y}\ge2\sqrt{\left(x-2y\right)\times\frac{4}{x-2y}}=2\sqrt{4}=4\)

Suy ra Pmin = 4

Dấu bằng xảy ra khi và chỉ khi \(x-2y=\frac{4}{x-2y}\Leftrightarrow\left(x-2y\right)^2=4\Leftrightarrow x-2y=2\)

( do x - 2y \(\ge0\) )

 

27 tháng 6 2017

\(P=\frac{1}{4x^2+1}+\frac{1}{4y^2+1}+\frac{2}{xy}\)

\(=\frac{1}{4x^2+1}+\frac{1}{4y^2+1}+\frac{\frac{64}{25}}{8xy}+\frac{42}{25xy}\)

\(\ge\frac{\left(1+1+\frac{8}{5}\right)^2}{4\left(x+y\right)^2+2}+\frac{42}{\frac{25\left(x+y\right)^2}{4}}=\frac{12}{5}\)

7 tháng 4 2017

bài 1 chắc điểm rơi x=2;y=4, cách làm tạm thời mk chưa nghĩ ra

bài 2: P=(x^2+4y^2)/(x-2y)=[x^2+(2y)^2]/(x-2y)=[(x-2y)^2+4xy]/(x-2y)=(x-2y) + 4xy/(x-2y)=(x-2y)+4/(x-2y) do xy=1

Áp dụng bđt AM-GM , ta có P >/  4 =>minP=4

đẳng thức xảy ra khi đồng thời  x-2y=2,x>2y,xy=1 ,tự giải hệ này ra nhé

30 tháng 3 2017

Sửa thành tìm GTLN nhé !

Với x,y,z>0 chia 2 vế của \(xy+yz+xz=xyz\) cho \(xyz\) ta có :

\(xy+yz+xz=xyz\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

Áp dụng BĐT Cauchy-Schwarz ta có: 

\(\frac{1}{4x+3y+z}\le\frac{1}{64}\left(\frac{4}{x}+\frac{3}{y}+\frac{1}{z}\right)\). Tương tự cho 2 BĐT kia:

\(\frac{1}{x+4y+3z}\le\frac{1}{64}\left(\frac{1}{x}+\frac{4}{y}+\frac{3}{z}\right);\frac{1}{3x+y+4z}\le\frac{1}{64}\left(\frac{3}{x}+\frac{1}{y}+\frac{4}{z}\right)\)

Cộng theo vế 3 BĐT trên ta có: 

\(M\leΣ\frac{1}{64}\left(\frac{4}{x}+\frac{3}{y}+\frac{1}{z}\right)=Σ\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{8}\)

Đẳng thức xảy ra khi \(x=y=z=3\)

5 tháng 2 2018

Dự đoán dấu "=" khi \(x=y=z=\frac{1}{\sqrt{3}}\Rightarrow S=1\)

Ta chứng minh \(S=1\) là GTNN của \(S\)

Thật vật ta có: \(\frac{1}{4x^2-yz+2}+\frac{1}{4y^2-xz+2}+\frac{1}{4z^2-xy+2}\ge1\)

\(\Leftrightarrow\frac{-4x^2+yz+1}{4x^2-yz+2}+\frac{-4y^2+xz+1}{4y^2-xz+2}+\frac{-4z^2+xy+1}{4z^2-xy+2}\ge0\)

\(\Leftrightarrow\frac{2yz-4x^2+xy+xz}{4x^2-yz+2}+\frac{2xz-4y^2+xy+yz}{4y^2-xz+2}+\frac{2xy-4z^2+xz+yz}{4z^2-xy+2}\ge0\)

\(\LeftrightarrowΣ_{cyc}\frac{-\left(2x+z\right)\left(x-y\right)-\left(2x+y\right)\left(x-z\right)}{4x^2-yz+2}\ge0\)

\(\LeftrightarrowΣ_{cyc}\left(\left(x-y\right)\left(\frac{2y+z}{4y^2-xz+2}-\frac{2x+z}{4x^2-yz+2}\right)\right)\ge0\)

\(\LeftrightarrowΣ_{cyc}\left(\left(x-y\right)^2\left(\frac{z^2+6yz+6xz+8xy-4}{\left(4y^2-xz+2\right)\left(4x^2-yz+2\right)}\right)\right)\ge0\) *Đúng*

BĐT cuối đúng hay ta có ĐCPM

10 tháng 2 2018

bạn có thể trình bày theo bdt cô si hay bunhia  được không

6 tháng 6 2018

câu 1

x^2 -5x +y^2+xy -4y +2014 

=(y^2+xy +1/4x^2) -4(y+1/2x)+4 +3/4x^2-3x+2010

=(y+1/2x-2)^2 +3/4(x^2-4x+4)+2007

=(y+1/2x-2)^2 +3/4(x-2)^2 +2007

GTNN là 2007<=> x=2 và y=1

10 tháng 5 2017

đề bạn cho thiếu r,,,,,còn đúng thì cách làm là áp dụng bđt

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

chú ý dấu = xảy ra là ok