\(\sqrt{6-\sqrt{35}}\) giải giúp nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\left(1-\sqrt{18}+\sqrt{32}\right).\sqrt{3-2\sqrt{2}}\)
\(=\left(1-\sqrt{9.2}+\sqrt{16.2}\right).\sqrt{2-2\sqrt{2}+1}\)
\(=\left(1-\sqrt{9}.\sqrt{2}+\sqrt{16}.\sqrt{2}\right).\sqrt{\left(\sqrt{2}-1\right)^2}\)
\(=\left(1-3\sqrt{2}+4\sqrt{2}\right).\left|\sqrt{2}-1\right|\)
\(=\left(1+\sqrt{2}\right).\left|\sqrt{2}-1\right|\)
Vì \(\sqrt{2}>1\)\(\Rightarrow\left|\sqrt{2}-1\right|>0\)
\(\Rightarrow A=\left(1+\sqrt{2}\right)\left(\sqrt{2}-1\right)=\left(\sqrt{2}\right)^2-1=2-1=1\)
b) \(B=\frac{3}{6+\sqrt{35}}-\frac{3}{6-\sqrt{35}}=\frac{3\left(6-\sqrt{35}\right)}{\left(6+\sqrt{35}\right)\left(6-\sqrt{35}\right)}-\frac{3\left(6+\sqrt{35}\right)}{\left(6-\sqrt{35}\right)\left(6+\sqrt{35}\right)}\)
\(=\frac{18-3\sqrt{35}-18-3\sqrt{35}}{36-35}=-6\sqrt{35}\)
\(\dfrac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}=\dfrac{\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}\left(\sqrt{5}-\sqrt{2}\right)}=\dfrac{\sqrt{21}}{7}\)
1)
\(=\sqrt{\left(\sqrt{11}\right)^2-2.\sqrt{11}.\sqrt{3}+\left(\sqrt{3}\right)^2}\)
\(=\sqrt{\left(\sqrt{11}-\sqrt{3}\right)^2}=\sqrt{11}-\sqrt{3}\)
2)
\(=\sqrt{\left(\sqrt{7}\right)^2-2.\sqrt{7}\sqrt{5}+\left(\sqrt{5}\right)^2}=\sqrt{\left(\sqrt{7}-\sqrt{5}\right)^2}=\sqrt{7}-\sqrt{5}\)
3)
\(=\sqrt{\left(\sqrt{11}\right)^2-2.\sqrt{11}\sqrt{5}+\left(\sqrt{5}\right)^2}=\sqrt{\left(\sqrt{11}-\sqrt{5}\right)}=\sqrt{11}-\sqrt{5}\)
4)
\(=\sqrt{3^2-2.3.\sqrt{5}+\left(\sqrt{5}\right)^2}=\sqrt{\left(3-\sqrt{5}\right)^2}=3-\sqrt{5}\)
5)
\(=\sqrt{3^2-2.3.2\sqrt{2}+\left(2\sqrt{2}\right)^2}=\sqrt{\left(3-2\sqrt{2}\right)^2}=3-2\sqrt{2}\)
`(sqrtx+2)/(sqrtx-3)-(sqrtx+1)/(sqrtx-2)-(3(sqrtx-1))/(x-5sqrtx+6)`
đk:`x>=0,x ne 4,x ne 9`
`=((sqrtx+2)^2-(sqrtx+1)(sqrtx+3)-3(sqrtx-1))/(x-5sqrtx+6)`
`=(x+4sqrtx+4-x-4sqrtx-3-3sqrtx+3)/(x-5sqrtx+6)`
`=(4-3sqrtx)/(x-5sqrtx+6)`
\(\frac{\sqrt{12}-\sqrt{30}}{\sqrt{6}}\cdot\frac{\sqrt{35}+\sqrt{14}}{\sqrt{7}}\)
\(=\frac{2\sqrt{3}-\sqrt{30}}{\sqrt{6}}\cdot\frac{\sqrt{35}+\sqrt{14}}{\sqrt{7}}\)
\(=\frac{\left(2\sqrt{3}-\sqrt{30}\right)\cdot\left(\sqrt{35}+\sqrt{14}\right)}{\sqrt{6}\cdot\sqrt{7}}\)
\(=\frac{\left(2\sqrt{3}-\sqrt{30}\right)\cdot\left(\sqrt{35}+\sqrt{14}\right)}{\sqrt{42}}\)
\(=\frac{2\sqrt{3}\cdot\sqrt{35}+2\sqrt{3}\cdot\sqrt{14}-\sqrt{30}\cdot\sqrt{35}-\sqrt{30}\cdot\sqrt{14}}{\sqrt{42}}\)
\(=\frac{2\sqrt{105}+2\sqrt{42}-5\sqrt{42}-2\sqrt{105}}{\sqrt{42}}\)
\(=\frac{-3\sqrt{42}}{\sqrt{42}}=-3\)
\(=\frac{\sqrt{2}.\sqrt{6}-\sqrt{5}.\sqrt{6}}{\sqrt{6}}.\frac{\sqrt{5}.\sqrt{7}+\sqrt{2}.\sqrt{7}}{\sqrt{7}}\)
\(=\left(\sqrt{2}-\sqrt{5}\right)\left(\sqrt{2}+\sqrt{5}\right)=2-5=-3\)
mình ghi nhầm pn ơi.. bài 2 là \(\left(3-\sqrt{2}\right)\cdot\sqrt{11+6\sqrt{6}}\)
a: \(\sqrt{5+2\sqrt{6}}=\sqrt{3}+\sqrt{2}\)
b: \(\sqrt{12+2\sqrt{35}}-\sqrt{12-2\sqrt{35}}=\sqrt{7}+\sqrt{5}-\sqrt{7}+\sqrt{5}=2\sqrt{5}\)
c: \(\sqrt{16+6\sqrt{7}}=4+\sqrt{7}\)
d: \(\sqrt{31-12\sqrt{3}}=3\sqrt{3}-2\)
e: \(\sqrt{27+10\sqrt{2}}=5+\sqrt{2}\)
f: \(\sqrt{14+6\sqrt{5}}=3+\sqrt{5}\)
\(A=\sqrt{3+2\sqrt{2}}+\sqrt{3-2\sqrt{2}}=\sqrt{\left(\sqrt{2}+1\right)^2}+\sqrt{\left(\sqrt{2}-1\right)^2}\)
\(=\sqrt{2}+1+\sqrt{2}-1=2\sqrt{2}\)
\(B=\frac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}=\frac{\sqrt{3}.\sqrt{5}-\sqrt{2}.\sqrt{3}}{\sqrt{5}.\sqrt{7}-\sqrt{2}.\sqrt{7}}=\frac{\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}\left(\sqrt{5}-\sqrt{2}\right)}=\frac{\sqrt{3}}{\sqrt{7}}=\sqrt{\frac{3}{7}}\)
\(C=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{4+2\sqrt{3}}}}\)
\(C=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\)
\(C=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{3}-1}}\)
\(C=\sqrt{6+2\sqrt{2}.\sqrt{2-\sqrt{3}}}\)
\(C=\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
\(C=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(C=\sqrt{6+2.\left(\sqrt{3}-1\right)}\)
\(C=\sqrt{6+2\sqrt{3}-2}\)
\(C=\sqrt{4+2\sqrt{3}}\)
\(C=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
1) Ta có: \(\sqrt{3+2\sqrt{2}}+\sqrt{3-2\sqrt{2}}\)
\(=\sqrt{2+2\sqrt{2}+1}+\sqrt{2-2\sqrt{2}+1}\)
\(=\sqrt{\left(\sqrt{2}+1\right)^2}+\sqrt{\left(\sqrt{2}-1\right)^2}\)
\(=\sqrt{2}+1+\sqrt{2}-1\)
\(=2\sqrt{2}\approx2,82843\)
2) Ta có: \(B=\frac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}\)
\(\Leftrightarrow B=\frac{\sqrt{5}.\sqrt{3}-\sqrt{2}.\sqrt{3}}{\sqrt{5}.\sqrt{7}-\sqrt{2}.\sqrt{7}}\)
\(\Leftrightarrow B=\frac{\sqrt{3}.\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}.\left(\sqrt{5}-\sqrt{2}\right)}\)
\(\Leftrightarrow B=\frac{\sqrt{3}}{\sqrt{7}}\approx0,65465\)
3) Ta có: \(C=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{4+2\sqrt{3}}}}\)
\(\Leftrightarrow C=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{3+2\sqrt{3}+1}}}\)
\(\Leftrightarrow C=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\)
\(\Leftrightarrow C=\sqrt{6+\sqrt{8}.\sqrt{3-\sqrt{3}-1}}\)
\(\Leftrightarrow C=\sqrt{6+\sqrt{2.8-2.2.\sqrt{3}.2}}\)
\(\Leftrightarrow C=\sqrt{6+\sqrt{12-2.\sqrt{4.3}.2+1}}\)
\(\Leftrightarrow C=\sqrt{6+\sqrt{12-2.\sqrt{12}.2+4}}\)
\(\Leftrightarrow C=\sqrt{6+\sqrt{\left(\sqrt{12}-2\right)^2}}\)
\(\Leftrightarrow C=\sqrt{6+\sqrt{12}-2}\)
\(\Leftrightarrow C=\sqrt{3+2\sqrt{3}+1}\)
\(\Leftrightarrow C=\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(\Leftrightarrow C=\sqrt{3}+1\approx2,73205\)
đoạn cuối thiếu dấu"+"
\(A=\dfrac{\sqrt{4}-\sqrt{5}}{4-5}+\dfrac{\sqrt{5}-\sqrt{6}}{5-6}+....+\dfrac{\sqrt{34}-\sqrt{35}}{34-35}+\dfrac{\sqrt{35}-\sqrt{36}}{335-36}\)
\(A=\dfrac{\sqrt{4}-\sqrt{5}+\sqrt{5}-\sqrt{6}+....+\sqrt{35}-\sqrt{36}}{-1}=\dfrac{\sqrt{4}-\sqrt{36}}{-1}\)
\(A=\sqrt{36}-\sqrt{4}=6-2=4\)
\(\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{6}}\\ =\sqrt{9-2\cdot3\cdot\sqrt{6}+6}+\sqrt{27-2\cdot6\sqrt{6}+8}\\ =\sqrt{3^2-2\cdot3\cdot\sqrt{6}+\left(\sqrt{6}\right)^2}+\sqrt{\left(3\sqrt{3}\right)^2-2\cdot3\sqrt{3}\cdot2\sqrt{2}+\left(2\sqrt{2}\right)^2}\\ =\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(3\sqrt{3}-2\sqrt{2}\right)^2}\\ =3-\sqrt{6}+3\sqrt{3}-2\sqrt{2}\)
Mình chỉ rút gọn được đến đó thôi, sorry :<<
Đặt \(A=\sqrt{6-\sqrt{35}}\)
\(\sqrt{2}A=\sqrt{12-2\sqrt{35}}=\sqrt{\left(\sqrt{7}-\sqrt{5}\right)^2}\)
\(=\left|\sqrt{7}-\sqrt{5}\right|=\sqrt{7}-\sqrt{5}\)
Vậy \(A=\frac{\sqrt{7}-\sqrt{5}}{\sqrt{2}}=\frac{\sqrt{14}-\sqrt{10}}{2}\)