Cho tam giác ABC có góc B=60o , AB=8cm AC= 13cm. Tính BC
( lớp 8, mong mọi người giúp em ạ )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H 50 37 O O
Kẻ \(AH\perp BC\). Đặt BH = x thì \(CH=60-x\)
Xét tam giác vuông ABH có: \(AH=tan50^o.x\)
Xét tam giác vuông ACH có: \(AH=tan37^o.\left(60-x\right)\)
Vậy nên ta có: \(tan50.x=tan37^o.\left(60-x\right)\)
\(\Leftrightarrow\left(tan50^o+tan37^o\right).x=tan37^o.60\)
\(\Leftrightarrow x=\frac{tan37^o.60}{tan50^o+tan37^o}\) (cm)
Vậy thì \(AB=\frac{x}{cos50^o}=\frac{tan37^o.60}{cos50^o\left(tan50^o+tan37^o\right)}\) (cm)
\(AH=x.tan50^o=\frac{tan50^o.tan37^o.60}{\left(tan50^o+tan37^o\right)}\) (cm)
\(AC=\frac{AH}{sin37^o}=\frac{tan50^o.60}{cos37^o\left(tan50^o+tan37^o\right)}\) (cm)
\(S_{ABC}=\frac{1}{2}.BC.AH=\frac{30tan50^o.tan37^o.60}{tan50^o+tan37^o}=\frac{1800tan50^o.tan37^o}{tan50^o+tan37^o}\left(cm^2\right)\)
Dựng \(AH\) vuông góc \(BC\). Đặt \(AB=x\Rightarrow AH=x.\sin60^0=\dfrac{x\sqrt{3}}{2};BH=x\cos60^0=\dfrac{x}{2}\)
\(\Rightarrow HC=BC-BH=8-\dfrac{x}{2};AC=12-x\)
Tam giác \(AHC\) vuông tại \(H\Rightarrow AC^2=AH^2+HC^2\Rightarrow\left(12-x\right)^2=\dfrac{3x^2}{4}+\left(8-\dfrac{x}{2}\right)^2\)
Giải phương trình trên ta được \(x=5\).
Vậy \(AB=5cm\).
A B C H
Xét tam giác vuông ABH có:
\(AH^2+BH^2=AB^2\)(Đinh lý Pytagol)
\(\Rightarrow8^2+BH^2=10^2\)
\(\Rightarrow BH=6\)
Ta có:
BC=BH+HC=6+15=21
Xét tam giác vuông AHC có:
\(AH^2+HC^2=AC^2\)(Định lý Pytagol)
\(\Rightarrow8^2+15^2=AC^2\)
\(\Rightarrow AC=17\)
\(\Rightarrow\)Chu vi tam giác ABC là:
10+17+21=48(cm)
Vậy chu vi tam giác ABC là 48cm
B A C H
\(\frac{AB}{AC}=\frac{5}{6}\)\(\Rightarrow\)\(\frac{AB}{5}=\frac{AC}{6}=x\) \(\left(x>0\right)\)
\(\Rightarrow\)\(AB=5x;\)\(AC=6x\)
Áp dụng hệ thức lượng ta có:
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)
\(\Leftrightarrow\)\(\frac{1}{9}=\frac{1}{25x^2}+\frac{1}{36x^2}\)
\(\Leftrightarrow\)\(\frac{61}{900x^2}=\frac{1}{9}\)
\(\Rightarrow\)\(900x^2=549\)
\(\Rightarrow\)\(x=\sqrt{\frac{549}{900}}=\frac{\sqrt{61}}{10}\)
\(\Rightarrow\)\(AB=\frac{\sqrt{61}}{2}\); \(AC=\frac{3\sqrt{61}}{5}\)
Áp dụng Pytago ta có:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow\) \(BC=61x^2\)
\(\Leftrightarrow\)\(BC=x\sqrt{61}\)
\(\Leftrightarrow\)\(BC=\frac{\sqrt{61}}{10}.\sqrt{61}=6,1\)
p/s: bạn tham khảo nhé, do số không đẹp nên có lẽ mk tính toán sai 1 số chỗ, bạn bỏ qua và ktra nhé, sai đâu ib mk
B A C H
\(\frac{AB}{AC}=\frac{5}{6}\)\(\Rightarrow\)\(\frac{AB}{5}=\frac{AC}{6}=x\) \(\left(x>0\right)\)
\(\Rightarrow\)\(AB=5x;\)\(AC=6x\)
Áp dụng định lý Pytago ta có:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow\)\(BC^2=61x^2\)
\(\Leftrightarrow\)\(BC=x\sqrt{61}\)
Áp dụng hệ thức lượng ta có:
\(AB.AC=AH.BC\)
\(\Leftrightarrow\)\(30x^2=3x\sqrt{61}\)
\(\Leftrightarrow\)\(x=\frac{\sqrt{61}}{10}\)
Đến đây bạn thay x vào các biểu thức tính AB,AC,BC ở trên nhé
A B C H
a) Áp dụng định lý Pytago ta có:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow\)\(BC^2=5^2+12^2=169\)
\(\Leftrightarrow\)\(BC=13\)
b) ÁP dụng hệ thức lượng ta có:
\(AB.AC=AH.BC\)
\(\Rightarrow\)\(AH=\frac{AB.AC}{BC}=\frac{5.12}{13}=\frac{60}{13}\)
\(AB^2=BH.BC\)
\(\Rightarrow\)\(BH=\frac{AB^2}{BC}=\frac{25}{13}\)
c) \(sinB=\frac{AC}{BC}=\frac{12}{13}\) \(cos=\frac{AB}{BC}=\frac{5}{13}\)
\(tanB=\frac{AC}{AB}=\frac{12}{5}\) \(cotB=\frac{AB}{AC}=\frac{5}{12}\)
từ AB+AC = 49 cm
và AB-AC = 7 cm
=> AB = (49+7) :2 = 28 cm
=> AC = AB- 7 = 28 -7 = 21cm
mà tam giác ABC có góc A = 90 độ
=> tam giác ABC vuông tại A
=> AB\(^2\) + AC\(^2\) =BC\(^2\) ( Định lí pi-ta-go)
<=> BC\(^2\) = AB\(^2\) +AC\(^2\) = 28\(^2\) + 21\(^2\) =1225= 35\(^2\)
=> BC= 35 cm
vậy BC= 35 cm
CHÚC BẠN HỌC TỐT
BC=11,36cm