K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2018

CM bài toán \(\frac{a}{b}< \frac{a+m}{b+m}\left(b>a\right)\)

a<b

\(\Rightarrow\)am<bm

\(\Rightarrow\) am+ab<bm+ab

\(\Rightarrow\)  a.(b+m)<b(m+a)

\(\Rightarrow\)  \(\frac{a}{b}< \frac{a+m}{b+m}\)

                                   đpcm

áp dụng vào M

\(\Rightarrow\) M<2      (1)

tách 1 thành \(\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)

so sánh từng số hạng của M và 1

\(\Rightarrow\) M>1   (2)

từ (1) và (2)

\(\Rightarrow\)   1<M<2

                   đpcm

mọi người thấy đúng thì tk nha

Ta có :

 \(A=|x|-|x-2|\le|x-x+2|\)

Dấu " = " xảy ra khi \(\hept{\begin{cases}x\ge0\\x-2\ge0\end{cases}\Rightarrow x\ge2}\)

NV
19 tháng 6 2019

a/ BĐT sai, cho \(a=b=c=2\) là thấy

b/ \(VT=\frac{a^4}{a^2+2ab}+\frac{b^4}{b^2+2bc}+\frac{c^4}{c^2+2ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)^2}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)}{\left(a+b+c\right)^2}\)

\(VT\ge\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)^2}{3\left(a+b+c\right)^2}=\frac{1}{3}\left(a^2+b^2+c^2\right)\)

Dấu "=" xảy ra khi \(a=b=c\)

c/ Tiếp tục sai nữa, vế phải là \(\frac{3}{2}\) chứ ko phải \(2\), và hy vọng rằng a;b;c dương

\(VT=\frac{a^2}{abc.b+a}+\frac{b^2}{abc.c+b}+\frac{c^2}{abc.a+c}\ge\frac{\left(a+b+c\right)^2}{abc\left(a+b+c\right)+a+b+c}\)

\(VT\ge\frac{9}{3abc+3}\ge\frac{9}{\frac{3\left(a+b+c\right)^3}{27}+3}=\frac{9}{\frac{3.3^3}{27}+3}=\frac{9}{6}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

NV
23 tháng 6 2019

Ta có:

\(a^3+b^3+b^3\ge3ab^2\) ; \(b^3+c^3+c^3\ge3bc^2\) ; \(c^3+a^3+a^3\ge3ca^2\)

Cộng vế với vế \(\Rightarrow a^3+b^3+c^3\ge ab^2+bc^2+ca^2\)

\(\frac{a^5}{b^2}+\frac{b^5}{c^2}+\frac{c^5}{a^2}=\frac{a^6}{ab^2}+\frac{b^6}{bc^2}+\frac{c^6}{ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{ab^2+bc^2+ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3}=a^3+b^3+c^3\)

NV
28 tháng 5 2019

Bạn vào đây xem thử:

Câu hỏi của ĐỖ THỊ THANH HẬU - Toán lớp 9 | Học trực tuyến

28 tháng 5 2019

cảm ơn bạn

10 tháng 7 2019

Bài 1: \(a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\)

Áp dụng BĐT Cauchy cho 3 số dương ta thu được đpcm (mình làm ở đâu đó rồi mà:)

Dấu "=" xảy ra khi a =2; b =1 (tự giải ra)

Bài 2: Thêm đk a,b,c >0.

Theo BĐT Cauchy \(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{c^2}}=\frac{2a}{c}\). Tương tự với hai cặp còn lại và cộng theo vế ròi 6chia cho 2 hai có đpcm.

Bài 3: Nó sao sao ấy ta?

31 tháng 10 2020

\(M=\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-a\right)}\)

Đánh giá đại diện: \(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{\left(a-c\right)-\left(a-b\right)}{\left(a-b\right)\left(a-c\right)}=\frac{1}{a-b}-\frac{1}{a-c}\)

Tương tự: \(\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{1}{b-c}-\frac{1}{b-a}\)

                   \(\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{c-a}-\frac{1}{c-b}\)

\(\Rightarrow M=\frac{1}{a-b}-\frac{1}{a-c}+\frac{1}{b-c}-\frac{1}{b-a}+\frac{1}{c-a}-\frac{1}{c-b}\)

\(\Rightarrow M=\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}+\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}\)

\(\Rightarrow M=2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)=2N\left(đpcm\right)\)

NV
11 tháng 3 2019

\(\frac{1}{a}+\frac{1}{c}=\frac{1}{a-b+c}+\frac{1}{b}\Leftrightarrow\frac{a+c}{ac}=\frac{a+c}{b\left(a-b+c\right)}\)

\(\Rightarrow\left[{}\begin{matrix}a+c=0\\ac=b\left(a-b+c\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a=-c\\ac=b\left(a-b\right)+bc\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}a=-c\\ac-bc-b\left(a-b\right)=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a=-c\\\left(c-b\right)\left(a-b\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}a=-c\\a=b\left(l\right)\\b=c\left(l\right)\end{matrix}\right.\) do \(a< b< c\) \(\Rightarrow a=-c\)

\(\Rightarrow\frac{1}{a^{2019}}-\frac{1}{b}+\frac{1}{c^{2019}}=\frac{1}{a^{2019}}-\frac{1}{b}-\frac{1}{a^{2019}}=\frac{-1}{b}\)

\(\frac{1}{a^{2019}-b+c^{2019}}=\frac{1}{a^{2019}-b-c^{2019}}=\frac{-1}{b}\)

\(\Rightarrow\frac{1}{a^{2019}}-\frac{1}{b}+\frac{1}{c^{2019}}=\frac{1}{a^{2019}-b+c^{2019}}\)

NV
22 tháng 6 2019

\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+0.\frac{2}{abc}}=\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\left(a+b+c\right).\frac{2}{abc}}\)

\(=\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{ac}+\frac{2}{bc}}=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\)

NV
16 tháng 3 2019

a/ Biến đổi tương đương:

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow a^2+2ab+b^2\ge4ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Vậy BĐT được chứng minh

b/ \(VT=\frac{a-d}{b+d}+1+\frac{d-b}{b+c}+1+\frac{b-c}{a+c}+1+\frac{c-a}{a+d}+1-4\)

\(VT=\frac{a+b}{b+d}+\frac{c+d}{b+c}+\frac{a+b}{a+c}+\frac{c+d}{a+d}-4\)

\(VT=\left(a+b\right)\left(\frac{1}{b+d}+\frac{1}{a+c}\right)+\left(c+d\right)\left(\frac{1}{b+c}+\frac{1}{a+d}\right)-4\)

\(\Rightarrow VT\ge\left(a+b\right).\frac{4}{b+d+a+c}+\left(c+d\right).\frac{4}{b+c+a+d}-4\)

\(\Rightarrow VT\ge\frac{4}{\left(a+b+c+d\right)}\left(a+b+c+d\right)-4=4-4=0\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=d\)

22 tháng 8 2017

Ta có: x2 – x – 12 = x2 – x – 16 + 4

= (x2 – 16) – (x – 4)

= (x – 4).(x + 4) – (x – 4)

= (x – 4).(x + 4 – 1)

= (x – 4).(x + 3)