K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2018

(Do phải chứng minh \(3a+2b⋮17\Leftrightarrow10a+b⋮17\)nên ta phải chứng minh hai chiều nhé)

Ta có : \(10a+b=17\Leftrightarrow2\left(10a+b\right)⋮17\)

Ta lại có : \(2\left(10a+b\right)-\left(3a+2b\right)\)

\(=20a+2b-3a-2b\)

\(=17a⋮17\)mà \(2\left(10a+b\right)⋮17\)

\(\Rightarrow3a+2b⋮17\)

Ta có : \(2\left(10a+b\right)-\left(3a+2b\right)\)

\(=20a+2b-3a-2b\)

\(=17a⋮17\)mà \(3a+2b⋮17\)

\(\Rightarrow2\left(10a+b\right)⋮17\)

Do \(\left(2,17\right)=1\Rightarrow10a+b⋮17\)

Vậy \(3a+2b⋮17\Leftrightarrow10a+b⋮17\)

Ta có:
\(2.\left(10a+b\right)-\left(3a+2b\right)=20a+2b-3a-2b\)
\(=17a\)
\(17⋮17\Rightarrow17a⋮17\)
\(\Rightarrow2.\left(10a+b\right)-\left(3a+2b\right)⋮17\)
\(3a+2b⋮17\Rightarrow2.\left(10a+b\right)⋮17\)
Mà (2,10) = 1\(\Rightarrow10a+b⋮17\)
⇒ 3a+2b ⋮ 17 ⇌ 10a + b⋮ 17 ( đpcm )

AH
Akai Haruma
Giáo viên
3 tháng 2 2018

Lời giải:

Đây là bài chứng minh 2 chiều (\(\Leftrightarrow )\). Vì vậy, làm như bạn Thủy thì chỉ chứng minh được một chiều thuận thôi.

Ta có:

\(3a+2b\vdots 17\)

\(\Leftrightarrow 9(3a+2b)\vdots 17\) (do \(9,17\) nguyên tố cùng nhau)

\(\Leftrightarrow 27a+18b\vdots 17\)

\(\Leftrightarrow 27a+18b-17(a+b)\vdots 17\)

\(\Leftrightarrow 10a+b\vdots 17\)

Bài toán hai chiều được chứng minh.

sorry anh nha em mới học lớp 5 thôi !

sory anh nha em mới chỉ học lớp 5 mà thôi xin anh thông cảm !

10 tháng 7 2018

Ta có :

\(3a+2b⋮17\)

\(\Rightarrow9\left(3a+2b\right)⋮17\)

\(\Rightarrow27a+18b⋮17\)

\(\Rightarrow\left(17a+17b\right)+\left(10a+b\right)⋮17\)

\(\Rightarrow10a+b⋮17\)(1)

Ta có :

\(10a+b⋮17\)

\(\Rightarrow2\left(10a+b\right)⋮17\)

\(\Rightarrow20a+2b⋮17\)

\(\Rightarrow17a+3a+2b⋮17\)

\(\Rightarrow3a+2b⋮17\)(2)

Từ (1) và (2) \(\Rightarrow3a+2b⋮17\Leftrightarrow10a+b⋮17\)(đpcm)

_Chúc bạn học tốt_

30 tháng 1 2020

Ta có 34a+17b=17(2a+b) chia hết cho 17
ta sẽ lấy 34a+17b trừ cho 10a+b ta có
24a+16b mà cả 2 số kia chia hết cho 17 nên
24a+16b chia hết cho 17 <=> 8(3a+2b) chia hết cho 17
Mà (8,17)=1 => 3a+2b chia hết cho 17 (Đpcm)

6 tháng 4 2020

Tham khảo :

Ta có:

3a+2b⋮17

⇒9(3a+2b)⋮17⇔27a+18b⋮17(1)

Mặt khác: 17a+17b⋮17(2)

Từ (1);(2)⇒27a+18b−(17a+17b)⋮17

⇔10a+b⋮17

Ta có đpcm.

18 tháng 2 2018

đặt 3a+2b=x ; 10a+b=y

Ta có:x chia hết cho17; cần chứng minhy chia hết cho 17

Xét :10x-3y=10.(3a+2b)-3(10a+b)=30a+20b-30a+3b=17b chia hết cho 17(vì 17 chia hết cho 17)

Nhận tháy:x chia hết cho 17 => 10x chia hết cho 17=>3y chia hết cho 17 mà(3;17)=1 =>y chia hết cho 17 =>10a+b chia hết cho17

VẬY:10a+b chia hết cho 17=>ĐPCM