1 phần 1*2+1 phần 2*3+1 phần 3*4+...+1 phần 49*50
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Những câu hỏi liên quan

WH
14 tháng 3 2018
Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow A< 1-\frac{1}{50}\)
\(\Rightarrow A< \frac{49}{50}\)
Mà \(\frac{49}{50}< 1\)
\(\Rightarrow A< 1\)
Vậy A<1

29 tháng 6 2017
1)4
2) 1 phần 5
3) 110 phần 13
4)7 phần 4
5)0
nếu đúng thì tk nhé hóng ^^

29 tháng 6 2017
a) \(\frac{2}{3}x\times\frac{1}{2}=\frac{1}{10}\Rightarrow\frac{2}{3}x=\frac{1}{5}\Rightarrow x=\frac{3}{10}\)
Ta có : \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}\)
\(=\frac{49}{50}\)