a^2 +b^2/4>=ab
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(\left(1+a\right)^2=\left(1.1+\sqrt{\frac{a}{b}}.\sqrt{ab}\right)^2\le\left(1+\frac{a}{b}\right)\left(1+ab\right)=\frac{\left(a+b\right)\left(1+ab\right)}{b}\)
\(\Rightarrow\frac{1}{\left(1+a\right)^2}\ge\frac{b}{\left(a+b\right)\left(1+ab\right)}\)
\(\left(1+b\right)^2\le\frac{\left(a+b\right)\left(1+ab\right)}{a}\Rightarrow\frac{1}{\left(1+b\right)^2}\ge\frac{a}{\left(a+b\right)\left(1+ab\right)}\)
\(\Rightarrow\frac{1}{\left(1+a\right)^2}+\frac{1}{\left(1+b\right)^2}\ge\frac{a}{\left(a+b\right)\left(1+ab\right)}+\frac{b}{\left(a+b\right)\left(1+ab\right)}=\frac{1}{1+ab}=\frac{1}{2}\)
Dấu "=" xảy ra khi \(a=b=1\)
2.
\(P=\sqrt{\frac{a^2}{a^4+3}}+\sqrt{\frac{b^2}{b^4+3}}\le\sqrt{2\left(\frac{a^2}{a^4+3}+\frac{b^2}{b^4+3}\right)}\)
Đặt \(\left(a^2;b^2\right)=\left(x;y\right)\Rightarrow xy=1\)
\(Q=\frac{x}{x^2+3}+\frac{y}{y^2+3}=\frac{x}{x^2+3}+\frac{x}{3x^2+1}-\frac{1}{2}+\frac{1}{2}\)
\(Q=\frac{-\left(x-1\right)^2\left(3x^2-2x+3\right)}{2\left(x^2+3\right)\left(3x^2+1\right)}+\frac{1}{2}\le\frac{1}{2}\)
\(\Rightarrow P\le\sqrt{2Q}\le1\)
\(P_{max}=1\) khi \(a=b=1\)
Xét VT = 1/ab + 1/(a² + b²) = 1/2ab + 1/(a² + b²) + 1/2ab
Áp dụng bđt: 1/x + 1/y ≥ 4/(x + y) với x, y >0 và với a + b = 1 ta có:
1/2ab + 1/(a² + b²) ≥ 4/(2ab + a² + b²) = 4/(a + b)² = 4
Áp dụng bđt 4xy ≤ (x + y)² ta có:
1/2ab = 2/4ab ≥ 2/(a + b)² = 2
=> VT ≥ 4 + 2 = 6
Dấu "=" xảy ra khi a = b và a + b = 1 nên a = b = ½
a) \(a^4+b^4\ge a^3b+ab^3\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\Leftrightarrow\left(a-b\right)^2\left[\left(a+\frac{b}{2}\right)^2+\frac{3b^2}{4}\right]\ge0\)(#)
Ta có điều (#) đúng nên suy ra ta có đpcm
Câu b đề kì kì bạn ơi
(a-b)^2>=0
<=>a^2+b^2-2ab>=0
<=>a^2+b^2+2ab>=4ab
<=>(a+b)^2>=4ab
<=>((a+b)^2)/4>=ab
Sai mất đề r bạn ơi !