cho tam giác ABC có D thuộc cạnh BC. sao cho BD=1/2 DC.
Kẻ BH và CK vuông góc với AD. CMR: BH=1/2 CK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C K H D
Xét \(\Delta\)HBD và \(\Delta\)KCD có
-góc H = góc K = 90
-góc BDH = góc KDC ( 2 góc đối đỉnh )
=> \(\Delta\)HBD đồng dang \(\Delta\)KCD
=> \(\frac{BD}{CD}=\frac{BH}{CK}\)
Mà \(BD=\frac{1}{2}CD\Rightarrow\frac{BD}{CD}=\frac{1}{2}\)
=>\(\frac{BH}{CK}=\frac{1}{2}\Rightarrow BH=\frac{1}{2}CK\)
Kết bạn với mình nha
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Dođó: ΔABD=ΔACE
Suy ra: AD=AE
hay ΔADE cân tại A
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{HAB}=\widehat{KAC}\)
Do đó: ΔAHB=ΔAKC
Suy ra: BH=CK và AH=AK
Xét ΔADE có
AH/AD=AK/AE
Do đó: HK//DE
hay HK//BC
c: Ta có: \(\widehat{OBC}=\widehat{HBD}\)
\(\widehat{OCB}=\widehat{KCE}\)
mà \(\widehat{HBD}=\widehat{KCE}\)
nên \(\widehat{OBC}=\widehat{OCB}\)
hay ΔOBC cân tại O