K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2018

\(x^3+2018x^2-2018x+2019\)

\(=\left(x^3+2019x^2\right)-\left(x^2+2019x\right)+\left(x+2019\right)\)

\(=x^2\left(x+2019\right)-x\left(x+2019\right)+\left(x+2019\right)\)

\(=\left(x+2019\right)\left(x^2-x+1\right)\)

Tham khảo nhé~

12 tháng 2 2020

\(x^4+2019x^2+2018x+2019\)

\(=x^4-x^3+x^3+2019x^2-x^2+x^2+2019x-x+2019\)

\(=\left(x^4-x^3+2019x^2\right)+\left(x^3-x^2+2019x\right)+\left(x^2-x+2019\right)\)

\(=x^2\left(x^2-x+2019\right)+x\left(x^2-x+2019\right)+\left(x^2-x+2019\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2019\right)\)

5 tháng 8 2019

\(\text{a) }4x^{16}+81=4x^4+36x^2+81-36x^8\)

                          \(=\left(4x^{16}+36x^8+81\right)-36x^8\)

                          \(=\left[\left(2x^8\right)^2+2.2x^8.9+9^2\right]+\left(6x^4\right)^2\)

                          \(=\left(2x^8+9\right)^2-\left(6x^4\right)^2\)

                         \(=\left(2x^8+9-6x^4\right)\left(2x^8+9+6x^4\right)\)                    

5 tháng 8 2019

\(\text{b) }x^4+2018x^2+2017x+2018\)

\(=x^4+2018x^2+2018x-x+2018\)

\(=\left(x^4-x\right)+\left(2018x^2+2018x+2018\right)\)

\(=x\left(x^3-1\right)-2018\left(x^2+x+1\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)+2018\left(x^2+x+1\right)\)

\(=\left(x^2-x\right)\left(x^2+x+1\right)+2018\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2018\right)\)

Ta  có : x4 + 2018x2 + 2017x + 2018 

= x4 - x + 2018x2 + 2018x + 2018 

= x(x3 - 1) + 2018(x2 + x + 1) 

= x(x - 1)(x2 + x + 1) + 2018(x+ x + 1)

= (x2 + x + 1)(x2 - x + 2018)

23 tháng 3 2018

2 câu riêng hay chung ?? 

Ta có: x=2017

nên x+1=2018

Ta có: \(P=x^{15}-2018x^{14}+2018x^{13}-2018x^{12}+...+2018x^3-2018x^2+2018x-2018\)

\(=x^{15}-\left(x+1\right)\cdot x^{14}+\left(x+1\right)\cdot x^{13}-\left(x+1\right)\cdot x^{12}+...+\left(x+1\right)\cdot x^3-\left(x+1\right)\cdot x^2+\left(x+1\right)\cdot x-\left(x+1\right)\)

\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}+...+x^3-x^3+x^2-x^2+x-x-1\)

=-1

8 tháng 3 2021

@ 肖战Daytoy_1005 giup

19 tháng 8 2017

F(x)=\(x^7-2018x^6+2018x^5-2018x^4+2018x^3-2018x^2+2018x+1.\)

x=2017=>2018=x+1 thay vào F(x) ta có:

F(x)=x+1=2018

20 tháng 8 2017

pkm;lkml

4 tháng 3 2019

\(P\left(x\right)=x^{2017}-2018x^{2017}+2018x^{2016}-...-2018x+1\)

Vì \(x=2017\)

\(\Leftrightarrow x+1=2018\)

Thay vào P(x) ta được :

\(P\left(x\right)=x^{2017}-x^{2017}\left(x+1\right)+x^{2016}\left(x+1\right)-...-x\left(x+1\right)+1\)

\(P\left(x\right)=x^{2017}-x^{2018}-x^{2017}+x^{2017}+x^{2016}-...-x^2-x+1\)

\(P\left(x\right)=-x^{2018}+1\)

\(P\left(x\right)=-2017^{2018}+1\)

AH
Akai Haruma
Giáo viên
29 tháng 4 2018

Lời giải:

Ta có:

\(A=x^5-2018x^4+2018x^3-2018x^2+2018x-1000\)

\(A=(x^5-2017x^4)-(x^4-2017x^3)+(x^3-2017x^2)-(x^2-2017x)+x-1000\)

\(A=x^4(x-2017)-x^3(x-2017)+x^2(x-2017)-x(x-2017)+x-1000\)

Tại \(x=2017\Rightarrow A=2017^4.0-2017^3.0+2017^2.0-2017.0+2017-1000\)

\(A=2017-1000=1017\)