CMR: 1/2^2+1/4^2+....+1/4010^2 < 1/2
nhanh nhé mk gấp lắm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}< \frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{\left(2n-2\right).2n}\)
\(< \frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2n-2}-\frac{1}{2n}\right)\)
\(< \frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2n}\right)=\frac{1}{4}-\frac{1}{4n}< \frac{1}{4}\)
\(\Rightarrow\) \(A< \frac{1}{4}\)
Study well ! >_<
Hello Cúp Bơ Quang, ta là Phát đây. Mi bí bài đó hả, ta cũng chẳng biết.
a)Ta có: 22>1.2⇒\(\frac{1}{2^2}< \frac{1}{1.2}\)
32>2.3⇒\(\frac{1}{3^2}< \frac{1}{2.3}\)
... 1002>99.100 ⇒ \(\frac{1}{100^2}< \frac{1}{99.100}\)
VT < \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)\(=1-\frac{1}{100}< 1\)(ĐPCM)
mình ko biết dấu sao lag gì nên lam mò nhé
giả sử sao la dấu nhân
suy ra s<1/1.2+1/2.3+...+1/99.100
s<1/1-1/2+1/2-1/3+...+1/99-1/100
s<1/1-1/100
s<99/100<1
suy ra s<1
nếu sao là dấu cộng
suy ra s=+2/2.3+...+2/100.101
1/2s=1/2-1/3+1/3-1/4+...+1/100-1/101
1/2s=1/2-1/100<1/2
1/2 s <1/2 suy ra s<1
\(B=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{25^2}\)
\(B=\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}\right)+\left(\dfrac{1}{4^2}+...+\dfrac{1}{25^2}\right)\)
\(B=\dfrac{49}{36}+\left(\dfrac{1}{4^2}+...+\dfrac{1}{25^2}\right)\)
\(B=\dfrac{1}{36}+\dfrac{4}{3}+\left(\dfrac{1}{4^2}+...+\dfrac{1}{25^2}\right)\)
\(B>\dfrac{4}{3}\left(1\right)\)
\(\)\(B< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{24.25}\)
\(B< 1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{24}-\dfrac{1}{25}\)
\(B< 2-\dfrac{1}{25}\)
\(B< 2\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) ta có:
\(\dfrac{4}{3}< B< 2\)
\(\rightarrowđpcm\)
giup minh lam nhanh nhanh len minh can gap ai la dung minh se k cho
\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{4010^2}\)
= \(\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2005^2}\right)\)
< \(\frac{1}{2^2}.\left(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2004.2005}\right)\)
\(=\frac{1}{2^2}.\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2004}-\frac{1}{2005}\right)\)
= \(\frac{1}{2^2}.\left(2-\frac{1}{2005}\right)=\frac{1}{2}-\frac{1}{4\left(2005\right)}< \frac{1}{2}\)
Vậy \(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{4010^2}< \frac{1}{2}\)
ban len google ma tim cac cach giai tuong tu nhe