K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6: \(-x^2y\left(xy^2-\dfrac{1}{2}xy+\dfrac{3}{4}x^2y^2\right)\)

\(=-x^3y^3+\dfrac{1}{2}x^3y^2-\dfrac{3}{4}x^4y^3\)

7: \(\dfrac{2}{3}x^2y\cdot\left(3xy-x^2+y\right)\)

\(=2x^3y^2-\dfrac{2}{3}x^4y+\dfrac{2}{3}x^2y^2\)

8: \(-\dfrac{1}{2}xy\left(4x^3-5xy+2x\right)\)

\(=-2x^4y+\dfrac{5}{2}x^2y^2-x^2y\)

9: \(2x^2\left(x^2+3x+\dfrac{1}{2}\right)=2x^4+6x^3+x^2\)

10: \(-\dfrac{3}{2}x^4y^2\left(6x^4-\dfrac{10}{9}x^2y^3-y^5\right)\)

\(=-9x^8y^2+\dfrac{5}{3}x^6y^5+\dfrac{3}{2}x^4y^7\)

11: \(\dfrac{2}{3}x^3\left(x+x^2-\dfrac{3}{4}x^5\right)=\dfrac{2}{3}x^3+\dfrac{2}{3}x^5-\dfrac{1}{2}x^8\)

12: \(2xy^2\left(xy+3x^2y-\dfrac{2}{3}xy^3\right)=2x^2y^3+6x^3y^3-\dfrac{4}{3}x^2y^5\)

13: \(3x\left(2x^3-\dfrac{1}{3}x^2-4x\right)=6x^4-x^3-12x^2\)

19 tháng 9 2023

a)-(x-y)(x2+xy-1)=-(x3+x2y-x-x2y-xy2+y)

                          =-(x3-xy2-x+y)

                          =-x3+xy2+x-y

b)x2(x-1)-(x3+1)(x-y)=x3-x2-x3+x2y-x+y

                                =-x2+x2y-x+y

c)(3x-2)(2x-1)+(-5x-1)(3x+2)=6x2-3x-4x+2-15x2-10x-3x-2

                                             =-9x2-20x

d) hình như bạn ghi lỗi

Bài 2: C=x(x2-y)-x2(x+y)+y(x2-x)

             =x3-xy-x3-x2y+x2y-xy

             =-2xy

Thay x=1/2,y=-1 vào C, ta có:

        C=-2.1/2.(-1)=1

Vậy C=1 khi x=1/2 và y=-1.

24 tháng 9 2021

\(a,x^4-2x^3+6x^2+x+14\\ =\left(x^4-3x^3+7x^2\right)+\left(x^3-3x^2+7x\right)+\left(2x^2-6x+14\right)\\ =\left(x^2-3x+7\right)\left(x^2+x+2\right):\left(x^2-3x+7\right)=x^2+x+2\)

Ta có \(x^2+x+2=x^2+x+\dfrac{1}{4}+\dfrac{7}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}>0\)

Vậy ...

\(b,A=x^3+3xy+y^3\\ A=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\\ A=x^2-xy+y^2+3xy\\ A=x^2+2xy+y^2=\left(x+y\right)^2=1\)

12 tháng 8 2023

a) \(\left(2x^3-x^2+5x\right):x\)

\(=\dfrac{2x^3-x^2+5x}{x}\)

\(=\dfrac{x\left(2x^2-x+5\right)}{x}\)

\(=2x^2-x+5\)

b) \(\left(3x^4-2x^3+x^2\right):\left(-2x\right)\)

\(=\dfrac{3x^4-2x^3+x^2}{-2x}\)

\(=\dfrac{2x\left(\dfrac{3}{2}x^3-x^2+\dfrac{1}{2}x\right)}{-2x}\)

\(=-\left(\dfrac{3}{2}x^3-x^2+\dfrac{1}{2}x\right)\)

\(=-\dfrac{3}{2}x^3+x^2-\dfrac{1}{2}x\)

c) \(\left(-2x^5+3x^2-4x^3\right):2x^2\)

\(=\dfrac{-2x^5+3x^2-4x^3}{2x^2}\)

\(=\dfrac{2x^2\left(-x^3+\dfrac{3}{2}-2x\right)}{2x^2}\)

\(=-x^3-2x+\dfrac{3}{2}\)

12 tháng 8 2023

d) \(\left(x^3-2x^2y+3xy^2\right):\left(-\dfrac{1}{2}x\right)\)

\(=\dfrac{x^3-2x^2y+3xy^2}{-\dfrac{1}{2}x}\)

\(=\dfrac{\dfrac{1}{2}x\left(2x^2-4xy+6y^2\right)}{-\dfrac{1}{2}x}\)

\(=-\left(2x^2-4xy+6y^2\right)\)

\(=-2x^2+4xy-6y^2\)

e) \(\left[3\left(x-y\right)^5-2\left(x-y\right)^4+3\left(x-y\right)^2\right]:5\left(x-y\right)^2\)

\(=\dfrac{3\left(x-y\right)^5-2\left(x-y\right)^4+3\left(x-y\right)^2}{5\left(x-y\right)^2}\)

\(=\dfrac{5\left(x-y\right)^2\left[\dfrac{3}{5}\left(x-y\right)^3-\dfrac{2}{5}\left(x-y\right)^2+\dfrac{3}{5}\right]}{5\left(x-y\right)^2}\)

\(=\dfrac{3}{5}\left(x-y\right)^3-\dfrac{2}{5}\left(x-y\right)^2+\dfrac{3}{5}\)

f) \(\left(3x^5y^2+4x^3y^3-5x^2y^4\right):2x^2y^2\)

\(=\dfrac{3x^5y^2+4x^3y^3-5x^2y^4}{2x^2y^2}\)

\(=\dfrac{2x^2y^2\left(\dfrac{3}{2}x^3+2xy-\dfrac{5}{2}y^2\right)}{2x^2y^2}\)

\(=\dfrac{3}{2}x^3+2xy-\dfrac{5}{2}y^2\)

4 tháng 8 2023

\(a,VP=\left(x+2y\right)\left(x^2-2xy+4y^2\right)\\ =\left(x+2y\right)\left[x^2-x.2y+\left(2y\right)^2\right]\\ =x^3+\left(2y\right)^3=x^3+8y^3=VT\left(đpcm\right)\\ b,VT=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\left(x-y\right)\\ =x^3-y^3-3xy\left(x-y\right)\\ =x^3-3x^2y+3xy^2-y^3\\ =\left(x-y\right)^3=VP\left(đpcm\right)\)

4 tháng 8 2023

\(c,VT=\left(x-3y\right)\left(x^2+3xy+9y^2\right)-\left(3y+x\right)\left(9y^2-3xy+x^2\right)\\ =\left(x-3y\right)\left[x^2+x.3y+\left(3y\right)^2\right]-\left(x+3y\right).\left[x^2-x.3y+\left(3y\right)^2\right]\\ =x^3-27y^3-\left(x^3+27y^3\right)\\ =-54y^3=VP\left(đpcm\right)\)

Câu 6:Thực hiện phép nhân  -2x(x2 + 3x - 4) ta được:A.-2x3 - 6x2 – 8x          B. 2x3 -6x2 – 8x      C. -2x3 - 6x2 + 8x         D. -2x3 + 3x2 -4Câu 7 : Phân tích đa thức x2 + 2xy + y2 – 9z2 thành nhân tử ta được:A. (x+y+3z)(x+y–3z)  B. (x-y+3z)(x+y–3z) C.(x - y +3z)(x - y – 3z)D. (x + y +3z)(x -y – 3z)Câu 8: Phân tích đa thức 27x3 – thành nhân tử ta...
Đọc tiếp

Câu 6:Thực hiện phép nhân  -2x(x2 + 3x - 4) ta được:

A.-2x3 - 6x2 – 8x          B. 2x3 -6x2 – 8x      C. -2x3 - 6x2 + 8x         D. -2x3 + 3x2 -4

Câu 7 : Phân tích đa thức x2 + 2xy + y2 – 9z2 thành nhân tử ta được:

A. (x+y+3z)(x+y–3z)  

B. (x-y+3z)(x+y–3z) 

C.(x - y +3z)(x - y – 3z)

D. (x + y +3z)(x -y – 3z)

Câu 8: Phân tích đa thức 27x3 – thành nhân tử ta được:

A.(3x+)(9x2-x+)  

B.(3x–)(9x2+x+) 

C.(27x–)(9x2+x+) 

 D.(27x+)(9x2+x+)  

Câu 9: Phân tích đa thức x2 + 7x + 12 thành nhân tử ta được:

A. (x - 3)( x + 4 )         B. (x + 3)( x + 4 )         C.(x + 5)( x + 2 )               D. (x -5)( x + 2 )

Câu 10:  Giá trị của biểu thức  (x2 + 4x + 4) tại x = - 2 là:

A. 4                            B. -2                          C. 0                           D. -8                 

2
23 tháng 11 2021

Câu 6:C

Câu 7:A

Câu 9:B

Câu 10:A

23 tháng 11 2021

Câu 6:Thực hiện phép nhân  -2x(x2 + 3x - 4) ta được:

A.-2x- 6x– 8x          B. 2x-6x– 8x      C. -2x- 6x+ 8x         D. -2x+ 3x-4

Câu 7 : Phân tích đa thức x2 + 2xy + y2 – 9z2 thành nhân tử ta được:

A. (x+y+3z)(x+y–3z)  

B. (x-y+3z)(x+y–3z) 

C.(x - y +3z)(x - y – 3z)

D. (x + y +3z)(x -y – 3z)

Câu 9: Phân tích đa thức x2 + 7x + 12 thành nhân tử ta được:

A. (x - 3)( x + 4 )         B. (x + 3)( x + 4 )         C.(x + 5)( x + 2 )               D. (x -5)( x + 2 )

Câu 10:  Giá trị của biểu thức  (x2 + 4x + 4) tại x = - 2 là:

A. 4                            B. -2                          C. 0                           D. -8

Mấy câu còn lại bị lỗi r nhé

9 tháng 1 2018

Đáp án B

Ta có  P = 2 x 3 + y 3 - 3 x y = 2 x + y x 2 - x y + y 2 - 3 x y = 2 x + y 2 - x y - 3 x y

Mặt khác  x 2 + y 2 = 2 ⇔ x + y 2 - 2 x y = 2 ⇔ 2 x y = x + y 2 - 2 ≤ x + y 2 2 ⇔ - 2 ≤ x + y ≤ 2

Khi đó   2 P = 2 x + y 4 - 2 x y - 6 x y = 2 x + y 4 - x + y 2 + 2 - 3 x + y 2 - 2

= 6 + 12 x + y - 3 x + y 2 - 2 x + y 3 = f t = 6 + 12 t - 3 t 2 - 2 t 3

Với   t = x + y ∈ - 2 ; 2

Xét hàm số f t = 6 + 12 t - 3 t 2 - 2 t 3  trên đoạn [-2;2] ta có

f ' t = 12 - 6 t - 6 t 2 ; f ' t = 0 ⇔ [ t = - 2 t = 1

So sánh các giá trị f(-2);f(1);f(2), ta được  m a x - 2 ; 2 f t = f 1 = 13 ⇒ M = 13 2 .

27 tháng 9 2018

a) Kết quả P = 15 2 ;                 b) Kết quả Q = 7 2 .

27 tháng 12 2021

1: \(=x^2+1\)

3: \(=\left(x-y-z\right)^2\)