CMR:
1/5 + 1/13 + 1/25 + .... + 1/102 + 112 < 9/10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét vế trái : \(T=\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{221}\)
Ta có : \(T< \frac{1}{5}+\frac{1}{12}+\frac{1}{24}+...+\frac{1}{220}\)
\(=\frac{1}{5}+\frac{1}{2}\left(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\right)=\frac{1}{5}+\frac{1}{2}\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)\)
\(=\frac{1}{5}+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)\)
\(=\frac{1}{5}+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{11}\right)< \frac{1}{5}+\frac{1}{4}\Rightarrow T< \frac{9}{20}\)
Sửa đề là với n >= 2 nhé!Mình cũng không chắc nx!Mình ngu dạng này lắm=(((
Với n = 2 thì \(VT=\frac{1}{5}+\frac{2}{13}+\frac{1}{25}< \frac{9}{20}\) (đúng)
Mệnh đề đúng với n = 2
Giả sử đúng với n = k (k>= 2)tức là \(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{k^2+\left(k+1\right)^2}< \frac{9}{20}\) (giả thiết qui nạp)
Ta chứng minh nó đúng với n = k + 1 tức là c/m \(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{\left(k+1\right)^2+\left(k+2\right)^2}< \frac{9}{20}\)
Ta có: VT = \(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{\left(k+1\right)^2+\left(k+2\right)^2}< \frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{k^2+\left(k+1\right)^2}< \frac{9}{20}\)
SAI ĐỀ RỒI
sorry mina , phải là 1/102+112