K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2015

x^2+y^2-x+6y+10

=(x^2-x+1/4)+(y^2+6y+9)+3/4

=(x-1/2)^2+(y+3)^2+3/4

Mmin=3/4 khi x=1/2; y=-3

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

14 tháng 9 2016

= -(x-1/2)2 +1/4 +2

GTLN = 9/2

NV
8 tháng 10 2019

\(A=\frac{x}{\left(x+2019\right)^2}\)

Với \(x\le0\Rightarrow A\le0\)

Với \(x>0\Rightarrow A=\frac{x}{x^2+4038x+2019^2}=\frac{1}{x+\frac{2019^2}{x}+4038}\)

\(\Rightarrow A\le\frac{1}{2\sqrt{x.\frac{2019^2}{x}}+4038}=\frac{1}{8076}\)

\(\Rightarrow A_{max}=\frac{1}{8076}\) khi \(x=2019\)

17 tháng 9 2018

a) \(P=\frac{x^2}{x^4+x^2+1}\)

Vì x2; x4 và +1 đều lớn hơn hoặc bằng 0 với mọi x ( trừ 1 :v )

suy ra P >= với mọi x

Mà x2 < x4 + x2 + 1

suy ra P <= 1

Dấu "=" xảy ra <=> P = 1

<=> x2 = x4 + x2 + 1

<=> x4 + x2 + 1 - x2 = 0

<=> x4 + 1 = 0

<=> x4 = -1

mà x4 >= với mọi x 

=> vô nghiệm

P.s : tìm đc Pmax khi <=> P = 0

<=> x2 = 0

<=> x = 0

Vậy Pmax = 0 <=> x = 0

17 tháng 9 2018

Nhầm đoạn P.s :

Tìm đc Pmin nha bạn :v

lí luận >= 0 như trên ta có P >= 0 với mọi x

Dấu "=" xảy ra <=> P = 0

<=> x2 = 0 ( vì mẫu ko bao giờ = 0 đc )

<=> x = 0

Vậy Pmin = 0 <=> x = 0

2 tháng 7 2016

\(A=\frac{x+2}{\left|x\right|}\)

\(=\orbr{\begin{cases}1+\frac{2}{x}\le3\left(x=1\right)\\-1+\frac{2}{-x};x< 0\end{cases}}\)

Vậy GTLN của A bằng 3 tại x = 1.

11 tháng 2 2016

Đặt \(y=\frac{x}{x^2+1}\Rightarrow y.\left(x^2+1\right)=x\Rightarrow yx^2+y-x=0\)

\(\Delta=1-4y^2\)

Để y xác định thì \(\Delta\ge0\Rightarrow1-4y^2\ge0\Leftrightarrow\frac{-1}{2}\le y\le\frac{1}{2}\)

Vậy GTNN của phân thức trên là -1/2 tại x=-1

       GTLN của phên thức trên là 1/2 tại x=1

3 tháng 5 2018

Ta có :

\(3A=\frac{3x^2}{x^4+x^2+1}=\frac{x^4+x^2+1-x^4+2x^2-1}{x^4+x^2+1}=\frac{\left(x^4+x^2+1\right)-\left(x^2-1\right)^2}{x^4+x^2+1}\)

\(=1-\frac{\left(x^2-1\right)^2}{x^4+x^2+1}\le1\)

\(\Leftrightarrow3A\le1\Rightarrow A\le\frac{1}{3}\)có GTLN là \(\frac{1}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow x=\pm1\)