giai pt x^3 + \(\frac{1}{x^3}\)= 13(x + \(\frac{1}{x}\))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1+2: phân tích mẫu thành nhân tử r` áp dụng
1/ab=1/a-1/b
bài 3+4: quy đồng rút gọn blah...
\(\frac{x^3\left(x-1\right)^3}{\left(x-1\right)^3}+\frac{x^3}{\left(x-1\right)^3}+\frac{3x^2\left(x-1\right)^2}{\left(x-1\right)^3}-\frac{2\left(x-1\right)^3}{\left(x-1\right)^3}=0,\)
\(x^5-x^4-2x^5+2x^5+x^4-x^3+x^3+3x^2\left(x-1\right)^2-2\left(x-1\right)^3=0\)
\(x^5+3x^4-6x^3+3x^2-2\left(x^2-2x+1\right)\left(x-1\right)=0\)
\(x^5+3x^4-6x^3+3x^2-2\left(x^3-x^2-2x^2+2x+x-x\right)=0\)
\(x^5+3x^4-6x^3+3x^2-2x^3+2x^2+4x^2-4x-2x+2x=0\)
\(x^5+3x^4-8x^3+9x^2-4x=0\)
\(x\left(x^4+3x^3-8x^2+9x-4\right)=0\)
ccc m cho đề khó thế m tự giải đi , nhức não
ĐKXĐ: ...
Đặt \(\sqrt{x+\frac{3}{4}}=a\ge0\Rightarrow x=a^2-\frac{3}{4}\)
\(\sqrt{a^2-\frac{3}{4}+1+a}+a^2-\frac{3}{4}=-\frac{1}{4}\)
\(\Leftrightarrow\sqrt{a^2+a+\frac{1}{4}}+a^2-\frac{1}{2}=0\)
\(\Leftrightarrow\sqrt{\left(a+\frac{1}{2}\right)^2}+a^2-\frac{1}{2}=0\)
\(\Leftrightarrow a^2+a=0\Rightarrow\left[{}\begin{matrix}a=0\\a=-1\left(l\right)\end{matrix}\right.\) \(\Rightarrow x=-\frac{3}{4}\)
\(\frac{3x-1}{x-1}-\frac{2x+5}{x+3}+\frac{1}{x^2+2x-3}=1.\)
\(ĐK:\hept{\begin{cases}x-1\ne0\\x+3\ne\\x^2+2x-3\ne0\end{cases}0}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne\Leftrightarrow-3\end{cases}}\)
\(\Leftrightarrow\left(3x-1\right)\left(x+3\right)-\left(2x+5\right)\left(x-1\right)+4-x^2-2x+3=0\)
\(\Leftrightarrow3x^2+9x-x-3-2x^2+2x-5x+5+4-x^2-2x+3=0\)
\(\Leftrightarrow3x+9=0\)
\(\Leftrightarrow3x=-9\Leftrightarrow x=-3\) (loại)
Vậy pt vô No
\(\Leftrightarrow\frac{x^2+y^2}{3xy}=\frac{13}{18}\)
<=>18(x2+y2)=39xy
<=>6x2-13xy+6y2=0
<=>(2x-3y)(3x-2y)=0
<=>2x=3y hoặc 3x=2y
với 2x=3y
\(\Rightarrow\frac{1}{x}+\frac{1}{\frac{2x}{3}}=\frac{5}{18}\Rightarrow\frac{1}{x}+\frac{3}{2x}=\frac{5}{18}\)
\(\Rightarrow\frac{5}{2x}=\frac{5}{18}\Rightarrow x=9;y=6\)
với 3x=2y
\(\Rightarrow\frac{1}{\frac{2y}{3}}+\frac{1}{y}=\frac{5}{18}\Rightarrow\frac{3}{2y}+\frac{1}{y}=\frac{5}{18}\)
\(\Rightarrow\frac{5}{2y}=\frac{5}{18}\Rightarrow y=9;x=6\)
Vậy nghiệm của phương trình (x;y)=(6;9);(9;6)
\(9\text{|}x+3\text{|}-4\text{|}x-4\text{|}=18-x+5.\) ( quy đồng) mẫu chung là 36
phá dấu bừa nhé
TH1 : \(9\left(-x-3\right)-4\left(-x+4\right)=18-x+5\)
\(-9x-27+4x-16=18-x+5\)
\(-4x=18+5+27+16=66\)
\(x=\frac{66}{-4}\)
TH2: \(9\left(x+3\right)-4\left(x-4\right)=18-x+5\) ( quy đồng ) mẫu chung là 36
\(9x+27-4x+16=18-x+5\)
\(6x=18+5-27-16=-20.\)
\(x=-\frac{20}{6}\)
p/s làm bừa nhé đừng chửi
đk tự giải nhé
với x tjỏa mãn đk ta có
\(\sqrt{\frac{x^2+3}{x}}=\frac{x^2+7}{2\left(x+1\right)}\Leftrightarrow\sqrt{x^3+3}=\frac{x^3+7x}{2\left(x+1\right)}\)
\(\Leftrightarrow\sqrt{x^3+3x}=\frac{x^3+3x+4x}{2\left(x+1\right)}\)
đặt \(\sqrt{x^3+3x}=a\)
ta có pt<=> \(a=\frac{a^2+4x}{2\left(x+1\right)}\Leftrightarrow2a\left(x+1\right)=a^2+4x\)
\(\Leftrightarrow2ax+2a=a^2+4x\Leftrightarrow a^2+4ax-2a-2ax=0\)
\(\Leftrightarrow\left(a^2-2ax\right)-\left(2a-4x\right)=0\Leftrightarrow a\left(a-2x\right)-2\left(a-2x\right)=0\)
\(\Leftrightarrow\left(a-2\right)\left(a-2x\right)=0\)
đến đây tự làm nhé