\(ChoA=\frac{1}{100}+\frac{1}{101}+...+\frac{1}{199}\)
Chứng minh rằng: \(A>\frac{5}{8}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
1/101 > 1/150
1/102> 1/150
...>1/150
1/150 = 1/150
=> 1/101 + 1/102 + .... + 1/150 > 1/150 +1/150+....+1/150(50 số hạng )= 1/3
ta có
1/151 >1/200
1/152 > 1/200
..>1/200
1/200 = 1/200
=> 1/151 + 1/152+....+1/200 > 1/200+1/200+ ...+1/200( 50 số hạng) = 1/4
==> 1/101 + 1/102+....+1/200 > 1/3 +1/4
==> A > 7/12
A= 1/100x100+1/101x101+..........+1/199x199
Vì 1/100x100<99x100
1/101x101<100x101
...........
1/199x199 < 1/198x199
=) A< 1/99x100+1/100x101+...+1/198x199
A<1/99-1/100+1/100-1/101+.....+1/198-199
A<100/19701=0,0050....
Mà 1/100=0,01
=> A<1/100
K đúng nhé
Giải
\(A=\frac{1}{100}+\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{199}\)
\(\Rightarrow A< \frac{1}{100}+\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\)
\(\Rightarrow A< \frac{100}{100}=1\)
Vậy A < 1 (đpcm)
Ta có thể thấy: \(\frac{1}{2000}\) là số hạng nhỏ nhất của dãy.
Xét các mẫu, ta tính được số các số hạng của dãy là:
\(\frac{2000-100}{1}+1=1901\)(số)
\(\Rightarrow\frac{1}{100}+\frac{1}{101}+...+\frac{1}{2000}>\frac{1}{2000}+\frac{1}{2000}+...+\frac{1}{2000}\)
( 1901 số \(\frac{1}{2000}\))
\(\Rightarrow\frac{1}{100}+\frac{1}{101}+...+\frac{1}{2000}>\frac{1901}{2000}>\frac{1000}{2000}=\frac{1}{2}\)
Vậy \(\frac{1}{100}+\frac{1}{101}+...+\frac{1}{2000}>\frac{1}{2}\)
Lời giải:
Ta có:
\(\text{VT}=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{199}+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}=\text{VP}\)
Ta có đpcm.
Đặt \(S=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+...+\frac{1}{199\cdot200}\)
\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{199}-\frac{1}{200}\)
\(S=\left(1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(S=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(S=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(S=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
Ta có đpcm