K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2018

Ta có: 

x4-x+2 = x4-2x2+1+x2-x+1/4+x2+3/4 = (x2-1)2 + (x-1/2)2 + x2+3/4

Nhận thấy: \(\hept{\begin{cases}\left(x^2-1\right)^2\ge0\forall x\\\left(x-\frac{1}{2}\right)^2\ge0\forall x\\x^2\ge0\forall x\end{cases}}\)

=> x4-x+2 \(\ge\)3/4 với mọi x

=> x4-x+2 > 0 với mọi x

6 tháng 11 2019

a) \(A=x^2-2x+2=\left(x-1\right)^2+1>0\forall x\inℝ\)

b) \(x-x^2-3=-\left(x^2-x+3\right)\)

\(=-\left(x^2-x+\frac{1}{4}+\frac{11}{4}\right)\)

\(=-\left[\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\right]\)

\(=-\left[\left(x-\frac{1}{2}\right)^2\right]-\frac{11}{4}\le\frac{-11}{4}< 0\forall x\inℝ\)

24 tháng 8 2024

x²-2x+2=(x²-2x+1)+1=( x-1)²+1

Mà (x-1)²≥0 với mọi x

=> (x-1)²+1>0 với mọi x

=> x²-2x+2>0 với mọi x

12 tháng 8 2016

\(x+\sqrt{x^2-x+1}>0\)

\(\Rightarrow x+\sqrt{\left(x-\frac{1}{2}\right)^2+\frac{3}{4}}>0\)

\(\Rightarrow\sqrt{\left(x-\frac{1}{2}\right)^2+\frac{3}{4}}>-x\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{9}{16}>x^2\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+x^2+\frac{9}{16}>0\) với mọi x

 

12 tháng 8 2016

bây h giải bpt trên : \(x+\sqrt{x^2-x+1}>0\)

<=> \(\sqrt{x^2-x+1}\)>-x

TH1: \(\begin{cases}-x< 0\\x^2-x+1\ge0\end{cases}\)<=>\(\begin{cases}x>0\\x\in R\end{cases}\)=> x>0

TH2: \(\begin{cases}-x\ge0\\x^2-x+1>x^2\end{cases}\)<=> \(\begin{cases}x\le0\\x< 1\end{cases}\)=> x\(\le\)0

kết hợp 2 TH

tập nghiệm x \(\in\)R

=> ĐPCM

5 tháng 7 2015

x^2-x+1>0

<=>x2-2x.1/2+1/4+3/4>0

<=>(x-1/2)2+3/4 >0 ( luôn đúng với mọi x vì (x-1/2)2\(\ge\)0 với mọi x)

vậy x^2-x+1>0 với mọi x thuộc R

3 tháng 11 2017

Mọi người giúp với 

Tìm x

x^2+5x=0

Chứng minh x^2-2x+3>0 với mọi số thực x

Đường trung bình của một tam là đoạn thẳng nối 2 trung điểm hai cạnh của tam giác.Cho tam giác ABC có I là trung điểm của cạnh AB.Qua I kẻ đường thẳng a // với cạnh BC cắt AC tại K

a) Chứng minh IK là đường trung bình của tam giác ABC

b) Tính độ dài IK với BC=12cm

c) Qua K kẻ đường thẳng b // với AB cắt BC tại L . Chứng minh rằng tứ giác BLKL là hình bình hành

6 tháng 5 2018

Ta có :

\(A\left(x\right)=x^4+2x^2+4\)

Mà 

\(x^4>0\)với mọi x        (1)

\(2x^2>0\)với mọi x               (2)

và \(4>0\)                  (3)

Từ (1) ; (2) và (3)

\(\Rightarrow x^4+2x^2+4>0\)với mọi x

\(\Rightarrow x^4+2x^2+4\)vô nghiệm với mọi A (x)

\(\Leftrightarrow A\left(x\right)>0\)

\(\Leftrightarrow x\in R\)(đpcm)

22 tháng 5 2018

\(A\left(x\right)=x^4+2x^2+4\)

\(\Rightarrow A\left(x\right)=x^4+x^2+x^2+1+3\)

\(\Rightarrow A\left(x\right)=x^2\left(x^2+1\right)+x^2+1+3\)

\(\Rightarrow A\left(x\right)=\left(x^2+1\right)^2+3\ge3\).Với \(\forall x\in R\)

=>ĐPCM

26 tháng 7 2016

a)\(x^2+2xy+1+y^2=\left(x+y\right)^2+1\)

Vì \(\left(x+y\right)^2\ge0\)với mọi \(x,y\in\)

nên \(\left(x+y\right)^2+1>0\)với mọi \(x,y\in R\)

Vậy biểu thức \(x^2+2xy+y^2+1>0\left(x;y\in R\right)\)

b) \(-x^2+x-1=-\left(x^2-2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\right)=-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\)

Vì \(\left(x-\frac{1}{2}\right)^2\ge0\left(x\in R\right)\)

nên \(-\left(x-\frac{1}{2}\right)^2\le0\left(x\in R\right)\)

do đó \(-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}< 0\left(x\in R\right)\)

Vậy biểu thức \(x-x^2-1< 0\left(x\in R\right)\)

14 tháng 9 2018

a) x2 + 2xy + 1 +y2 = (x2+2xy+y2)+1=(x+y)2+1 mà (x+y)2 luôn lớn hơn hoặc bằng 0 với mọi x,y

=>x2+2xy+1+y2>1>0

b)x-x2-1=-(x2-x+1)=-((x2-2.x.0,5+0,25)+0,75)=-((x-0,5)2+0,75) mà (x-0,5)2 luôn lớn hơn hoặc bằng 0 vớ mọi x

=>x-x2-1<0

TƯỞNG KHÔNG DỄ NHƯNG DỄ KHÔNG TƯỞNG!

23 tháng 3 2017

\(f'=6x^8-6x^5+6x+6=6\left(x^8-x^5+x+1\right)\)

\(\left[{}\begin{matrix}\left|x\right|\le1\Rightarrow\left|x^5-x\right|\le\left|x\right|\le1\Rightarrow1-x^5-x\ge0\\\left|x\right|\ge1\Rightarrow\left|x^5\right|\le x^8\Rightarrow\left\{{}\begin{matrix}x^8-x^5>0\\x^2-x>0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow f'\left(x\right)>0\forall x\)

28 tháng 3 2017

​lập luận 1 noi ,kết luận 1 ngã...ketluan:ngu vai.

27 tháng 4 2017

Vì \(\hept{\begin{cases}x^4\ge0\forall x\\x^2\ge0\forall x\end{cases}\Rightarrow x^4+x^2\ge0\forall x}\)

\(\Rightarrow A\left(x\right)=x^4+x^2+4\ge4\forall x\)

Mà \(4>0\) \(\Rightarrow A\left(x\right)>0\forall x\in R\) (ĐPCM)


x
4
≥ 0∀x
x
2
≥ 0∀x
⇒x
4
+ x
2
≥ 0∀x
⇒A x = x
4
+ x
2
+ 4 ≥ 4∀x
Mà 4 > 0 ⇒A x > 0∀x ∈ R (ĐPCM)

1 tháng 7 2017

a)Ta có: \(a^2+2a+b^2+1=a^2+2a+1+b^2\)

                                                 \(=\left(a+1\right)^2+b^2\)

                         Vì \(\left(a+1\right)^2\ge0;b^2\ge0\)

                  \(\left(a+1\right)^2+b^2\ge0\)

b)\(x^2+y^2+2xy+4=\left(x+y\right)^2+4\)

                 Vì \(\left(x+y\right)^2\ge0\Rightarrow< 0\left(x+y\right)^2+4\left(đpcm\right)\)

c)Ta có:\(\left(x-3\right)\left(x-5\right)+2=x^2-8x+15+2\)

                                                      \(=x^2-8x+16+1\)

                                                      \(=\left(x-4\right)^2+1\)

                    Vì \(\left(x-4\right)^2\ge0\)

                              \(\Rightarrow\left(x-4\right)^2+1\ge1\)

Vậy (x-3)(x-5) + 2 > 0 ∀ x R