Chứng minh
\(x^4-x+2>0\)(Với mọi x\(\in\)R)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=x^2-2x+2=\left(x-1\right)^2+1>0\forall x\inℝ\)
b) \(x-x^2-3=-\left(x^2-x+3\right)\)
\(=-\left(x^2-x+\frac{1}{4}+\frac{11}{4}\right)\)
\(=-\left[\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\right]\)
\(=-\left[\left(x-\frac{1}{2}\right)^2\right]-\frac{11}{4}\le\frac{-11}{4}< 0\forall x\inℝ\)
\(x+\sqrt{x^2-x+1}>0\)
\(\Rightarrow x+\sqrt{\left(x-\frac{1}{2}\right)^2+\frac{3}{4}}>0\)
\(\Rightarrow\sqrt{\left(x-\frac{1}{2}\right)^2+\frac{3}{4}}>-x\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{9}{16}>x^2\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+x^2+\frac{9}{16}>0\) với mọi x
bây h giải bpt trên : \(x+\sqrt{x^2-x+1}>0\)
<=> \(\sqrt{x^2-x+1}\)>-x
TH1: \(\begin{cases}-x< 0\\x^2-x+1\ge0\end{cases}\)<=>\(\begin{cases}x>0\\x\in R\end{cases}\)=> x>0
TH2: \(\begin{cases}-x\ge0\\x^2-x+1>x^2\end{cases}\)<=> \(\begin{cases}x\le0\\x< 1\end{cases}\)=> x\(\le\)0
kết hợp 2 TH
tập nghiệm x \(\in\)R
=> ĐPCM
x^2-x+1>0
<=>x2-2x.1/2+1/4+3/4>0
<=>(x-1/2)2+3/4 >0 ( luôn đúng với mọi x vì (x-1/2)2\(\ge\)0 với mọi x)
vậy x^2-x+1>0 với mọi x thuộc R
Mọi người giúp với
Tìm x
x^2+5x=0
Chứng minh x^2-2x+3>0 với mọi số thực x
Đường trung bình của một tam là đoạn thẳng nối 2 trung điểm hai cạnh của tam giác.Cho tam giác ABC có I là trung điểm của cạnh AB.Qua I kẻ đường thẳng a // với cạnh BC cắt AC tại K
a) Chứng minh IK là đường trung bình của tam giác ABC
b) Tính độ dài IK với BC=12cm
c) Qua K kẻ đường thẳng b // với AB cắt BC tại L . Chứng minh rằng tứ giác BLKL là hình bình hành
Ta có :
\(A\left(x\right)=x^4+2x^2+4\)
Mà
\(x^4>0\)với mọi x (1)
\(2x^2>0\)với mọi x (2)
và \(4>0\) (3)
Từ (1) ; (2) và (3)
\(\Rightarrow x^4+2x^2+4>0\)với mọi x
\(\Rightarrow x^4+2x^2+4\)vô nghiệm với mọi A (x)
\(\Leftrightarrow A\left(x\right)>0\)
\(\Leftrightarrow x\in R\)(đpcm)
\(A\left(x\right)=x^4+2x^2+4\)
\(\Rightarrow A\left(x\right)=x^4+x^2+x^2+1+3\)
\(\Rightarrow A\left(x\right)=x^2\left(x^2+1\right)+x^2+1+3\)
\(\Rightarrow A\left(x\right)=\left(x^2+1\right)^2+3\ge3\).Với \(\forall x\in R\)
=>ĐPCM
a)\(x^2+2xy+1+y^2=\left(x+y\right)^2+1\)
Vì \(\left(x+y\right)^2\ge0\)với mọi \(x,y\in\)
nên \(\left(x+y\right)^2+1>0\)với mọi \(x,y\in R\)
Vậy biểu thức \(x^2+2xy+y^2+1>0\left(x;y\in R\right)\)
b) \(-x^2+x-1=-\left(x^2-2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\right)=-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\left(x\in R\right)\)
nên \(-\left(x-\frac{1}{2}\right)^2\le0\left(x\in R\right)\)
do đó \(-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}< 0\left(x\in R\right)\)
Vậy biểu thức \(x-x^2-1< 0\left(x\in R\right)\)
\(f'=6x^8-6x^5+6x+6=6\left(x^8-x^5+x+1\right)\)
\(\left[{}\begin{matrix}\left|x\right|\le1\Rightarrow\left|x^5-x\right|\le\left|x\right|\le1\Rightarrow1-x^5-x\ge0\\\left|x\right|\ge1\Rightarrow\left|x^5\right|\le x^8\Rightarrow\left\{{}\begin{matrix}x^8-x^5>0\\x^2-x>0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow f'\left(x\right)>0\forall x\)
Vì \(\hept{\begin{cases}x^4\ge0\forall x\\x^2\ge0\forall x\end{cases}\Rightarrow x^4+x^2\ge0\forall x}\)
\(\Rightarrow A\left(x\right)=x^4+x^2+4\ge4\forall x\)
Mà \(4>0\) \(\Rightarrow A\left(x\right)>0\forall x\in R\) (ĐPCM)
Vì
x
4
≥ 0∀x
x
2
≥ 0∀x
⇒x
4
+ x
2
≥ 0∀x
⇒A x = x
4
+ x
2
+ 4 ≥ 4∀x
Mà 4 > 0 ⇒A x > 0∀x ∈ R (ĐPCM)
a)Ta có: \(a^2+2a+b^2+1=a^2+2a+1+b^2\)
\(=\left(a+1\right)^2+b^2\)
Vì \(\left(a+1\right)^2\ge0;b^2\ge0\)
\(\left(a+1\right)^2+b^2\ge0\)
b)\(x^2+y^2+2xy+4=\left(x+y\right)^2+4\)
Vì \(\left(x+y\right)^2\ge0\Rightarrow< 0\left(x+y\right)^2+4\left(đpcm\right)\)
c)Ta có:\(\left(x-3\right)\left(x-5\right)+2=x^2-8x+15+2\)
\(=x^2-8x+16+1\)
\(=\left(x-4\right)^2+1\)
Vì \(\left(x-4\right)^2\ge0\)
\(\Rightarrow\left(x-4\right)^2+1\ge1\)
Vậy (x-3)(x-5) + 2 > 0 ∀ x R
Ta có:
x4-x+2 = x4-2x2+1+x2-x+1/4+x2+3/4 = (x2-1)2 + (x-1/2)2 + x2+3/4
Nhận thấy: \(\hept{\begin{cases}\left(x^2-1\right)^2\ge0\forall x\\\left(x-\frac{1}{2}\right)^2\ge0\forall x\\x^2\ge0\forall x\end{cases}}\)
=> x4-x+2 \(\ge\)3/4 với mọi x
=> x4-x+2 > 0 với mọi x