K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2021

\(\sqrt{x^2-4x+4}-1=3\)

\(\Leftrightarrow\left|x-2\right|=2\)

\(TH1:x\ge2\Rightarrow x=4\left(tm\right)\)

\(TH2:x< 2\Rightarrow x=0\left(tm\right)\)

KL: pt có 2 nghiệm ........

15 tháng 9 2021

\(\left(x-5\right)^2=\left(18\dfrac{1}{3}:5\right).\dfrac{11}{3}\)

\(\Leftrightarrow\left(x-5\right)^2=\dfrac{55}{3}.\dfrac{1}{5}.\dfrac{11}{3}\)

\(\Leftrightarrow\left(x-5\right)^2=\dfrac{121}{9}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=\dfrac{11}{3}\\x-5=-\dfrac{11}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{26}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\)

22 tháng 7 2023

\(x^2+4x+5=2\sqrt{2x+3}\)

\(ĐK:x\ge-\dfrac{3}{2}\)

\(pt\Leftrightarrow(2x+3-2\sqrt{2x+3}+1)+x^2+2x+1=0\)

\(\Leftrightarrow\left(\sqrt{2x+3}-1\right)^2=-\left(x+1\right)^2\)

Vì \(\left(\sqrt{2x+3}-1\right)^2\ge0;-\left(x+1\right)^2\le0\forall x\)

\(\Rightarrow\left\{{}\begin{matrix}(\sqrt{2x+3}-1)^2=0\\\left(x+1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2x+3}-1=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2x+3}=1\\x=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+3=1\\x=-1\end{matrix}\right.\Leftrightarrow x=-1\left(tm\right)}\)

22 tháng 7 2023

\(\Leftrightarrow x=-1\left(tm\right)\)

Vậy, pt có nghiệm duy nhất là x=-1

22 tháng 4 2022

C

21 tháng 6 2019

\(a,\sqrt{4-4x+x^2}+\sqrt{\frac{2}{x^2+6x+9}}=\sqrt{\left(x-2\right)^2}+\sqrt{\frac{2}{\left(x+3\right)^2}}\)

\(đkxđ\Leftrightarrow\hept{\begin{cases}x+2\ge0\\x+3>0\end{cases}\Rightarrow\hept{\begin{cases}x\ge-2\\x>-3\end{cases}\Rightarrow}x\ge-2}\)

\(b,\frac{5\sqrt{x}}{\sqrt{x}-3}+\frac{2}{\sqrt{x}}\)

\(đkxđ\Leftrightarrow\hept{\begin{cases}x>0\\\sqrt{x}-3\ne0\end{cases}\Rightarrow\hept{\begin{cases}x>0\\\sqrt{x}\ne\sqrt{9}\end{cases}\Rightarrow}\hept{\begin{cases}x>0\\x\ne9\end{cases}}}\)

\(c,\sqrt{3-\sqrt{x}}\)

\(đkxđ\Leftrightarrow\hept{\begin{cases}x\ge0\\3-\sqrt{x}\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge0\\\sqrt{x}\le3\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x>0\\\sqrt{x}\le9\end{cases}\Rightarrow\hept{\begin{cases}x>0\\x\le3\end{cases}}}\)

\(\Rightarrow0< x\le3\)

3 tháng 4 2020

Câu 1 là \(\left(8x-4\right)\sqrt{x}-1\) hay là \(\left(8x-4\right)\sqrt{x-1}\)?

3 tháng 4 2020

Câu 1:ĐK \(x\ge\frac{1}{2}\)

\(4x^2+\left(8x-4\right)\sqrt{x}-1=3x+2\sqrt{2x^2+5x-3}\)

<=> \(\left(4x^2-3x-1\right)+4\left(2x-1\right)\sqrt{x}-2\sqrt{\left(2x-1\right)\left(x+3\right)}\)

<=> \(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}\left(2\sqrt{x\left(2x-1\right)}-\sqrt{x+3}\right)=0\)

<=> \(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}.\frac{8x^2-4x-x-3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}=0\)

<=>\(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}.\frac{\left(x-1\right)\left(8x+3\right)}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}=0\)

<=> \(\left(x-1\right)\left(4x+1+2\sqrt{2x-1}.\frac{8x+3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}\right)=0\)

Với \(x\ge\frac{1}{2}\)thì \(4x+1+2\sqrt{2x-1}.\frac{8x-3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}>0\)

=> \(x=1\)(TM ĐKXĐ)

Vậy x=1

17 tháng 10 2018
mấy bài này bn đặt ẩn phụ là ra
17 tháng 10 2018

cho mình hỏi hai ý đầu thôi, hai ý sau mình giải ra rồi. Thanks Zero ~

25 tháng 9 2021

1) ĐKXĐ: \(16x^2-25\ge0\)

\(\Leftrightarrow x^2\ge\dfrac{25}{16}\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge\dfrac{5}{4}\\x\le-\dfrac{5}{4}\end{matrix}\right.\)

2) ĐKXĐ: \(4x^2-49\ge0\Leftrightarrow x^2\ge\dfrac{49}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge\dfrac{7}{2}\\x\le-\dfrac{7}{2}\end{matrix}\right.\)

3) ĐKXĐ: \(8-x^2\ge0\Leftrightarrow x^2\le8\)

\(\Leftrightarrow-2\sqrt{2}\le x\le2\sqrt{2}\)

4) ĐKXĐ: \(x^2-12\ge0\Leftrightarrow x^2\ge12\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge2\sqrt{3}\\x\le-2\sqrt{3}\end{matrix}\right.\)

5) ĐKXĐ: \(x^2+4\ge0\left(đúng\forall x\right)\)

29 tháng 10 2021

a: 

x-∞\(\dfrac{3}{2}\)+∞
y+∞\(-\dfrac{1}{4}\)+∞

 

14 tháng 3 2022

-2

-19/3

14 tháng 3 2022

 k mình nha