Bài 1: Tính
a) -(âm 2/7-5/13)-(8/13+2/17)
b) -(5/18+2/7)-(5/7+13/18)
c) 2/3.6/5+1/2
Giup mình vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`@` `\text {Ans}`
`\downarrow`
`1,`
`a)`
`-7/25 + (-8)/25`
`= (-7 - 8)/25`
`= -15/25`
`= -3/5`
`b)`
`6/13 + (-15)/39`
`= 18/39 + (-15)/39`
`= (18 - 15)/39`
`= 3/39`
`= 1/13`
`c)`
`5/7 + 4/(-14)`
`= 10/14 + (-4)/14`
`= (10 - 4)/14`
`= 6/14`
`= 3/7`
`d)`
`-8/18 + (-15)/27`
`= -4/9 + (-5)/9`
`= (-4-5)/9`
`= -9/9 = -1`
`2,`
`a)`
`3/5 + (-7)/4`
`= 12/20 + (-35)/20`
`= (12 - 35)/20`
`=-23/20`
`b)`
`(-2) + (-5)/8`
`= (-16)/8 + (-5)/8`
`= (-16 - 5)/8`
`= -21/8`
`c)`
`1/8 + (-5)/9`
`= 9/72 + (-40)/72`
`= (9-40)/72`
`= -31/72`
`d)`
`6/13 + (-14)/39`
`= 18/39 + (-14)/39`
`= (18 - 14)/39`
`= 4/39`
`e)`
`(-18)/24 + 15/21`
`= (-3)/4 + 5/7`
`= (-21)/28 + 20/28`
`= (-21 + 20)/28`
`= -1/28`
2:
a: 2/9-x=-5/9
=>x=2/9+5/9=7/9
b: x-7/13=1/2
=>x=1/2+7/13=27/26
câu a
\(\dfrac{7}{4}+\dfrac{3}{2}+\dfrac{-9}{16}\\ =\dfrac{28}{16}+\dfrac{24}{16}-\dfrac{9}{16}=\dfrac{43}{16}\)
câu b
\(-\dfrac{2}{7}+\dfrac{3}{5}+\dfrac{9}{7}+\dfrac{-18}{5}\\ =-\dfrac{10}{35}+\dfrac{21}{35}+\dfrac{45}{35}-\dfrac{126}{35}\\ =-\dfrac{70}{35}=-2\)
câu c
\(-\dfrac{5}{13}+\dfrac{11}{10}-\dfrac{-9}{10}+\dfrac{-8}{13}\\ =-\dfrac{5}{13}+\dfrac{11}{10}+\dfrac{9}{10}-\dfrac{8}{13}\\ =-\dfrac{50}{130}+\dfrac{143}{130}+\dfrac{117}{130}-\dfrac{80}{130}\\ =\dfrac{130}{130}=1\)
bài 2
câu a
\(\dfrac{2}{9}-x=-\dfrac{5}{9}\\ x=\dfrac{2}{9}-\dfrac{-5}{9}\\ x=\dfrac{7}{9}\)
câu b
\(x+\dfrac{-7}{13}=\dfrac{1}{2}\\ x=\dfrac{1}{2}-\dfrac{-7}{13}\\ x=\dfrac{13}{26}+\dfrac{14}{26}\\ x=\dfrac{17}{26}\)
4:
a: =4/15-2,9+11/15=1-2,9=-1,9
b: \(=-36,75+3,7-63,25+6,3=10-100=-90\)
c: \(=6,5+3,5-\dfrac{10}{17}-\dfrac{7}{17}=10-1=9\)
d: \(=\dfrac{13}{25}\left(-39,1-60,9\right)=\dfrac{13}{25}\left(-100\right)=-52\)
e: =-5/12-7/12-3,7-6,3=-1-10=-11
f: =2,8(-6/13-7/13)-7,2=-2,8-7,2=-10
a.\(\dfrac{27}{8}\)
b.\(\dfrac{37}{40}\)
c.\(\dfrac{5}{2}\)
d.\(\dfrac{7}{3}\)
e.5
g.\(\dfrac{53}{16}\)
Bài 1 :
a) \(\dfrac{3}{2}+\dfrac{5}{4}+\dfrac{5}{8}=\dfrac{12}{8}+\dfrac{10}{8}+\dfrac{5}{8}=\dfrac{12+10+5}{8}=\dfrac{27}{8}\)
b) \(\dfrac{4}{5}-\dfrac{3}{8}+\dfrac{2}{4}=\dfrac{32}{40}-\dfrac{15}{40}+\dfrac{20}{40}=\dfrac{32-15+20}{40}=\dfrac{37}{40}\)
c) \(3+\dfrac{6}{8}-\dfrac{5}{4}=\dfrac{3}{1}+\dfrac{6}{8}-\dfrac{5}{4}=\dfrac{24}{8}+\dfrac{6}{8}-\dfrac{10}{8}=\dfrac{20}{8}=\dfrac{5}{2}\)
d) \(\dfrac{5}{6}-\dfrac{1}{2}+2=\dfrac{5}{6}-\dfrac{1}{2}+\dfrac{2}{1}=\dfrac{5}{6}-\dfrac{3}{6}+\dfrac{12}{6}=\dfrac{14}{6}=\dfrac{7}{3}\)
e) \(\dfrac{3}{5}+\dfrac{6}{11}+\dfrac{7}{13}+\dfrac{2}{5}+\dfrac{16}{11}+\dfrac{19}{13}=\left(\dfrac{3}{5}+\dfrac{2}{5}\right)+\left(\dfrac{6}{11}+\dfrac{16}{11}\right)+\left(\dfrac{7}{13}+\dfrac{19}{13}\right)=1+2+2=5\)
g) \(\dfrac{75}{100}+\dfrac{18}{21}+\dfrac{29}{32}+\dfrac{1}{4}+\dfrac{3}{21}+\dfrac{13}{32}=\dfrac{3}{4}+\dfrac{6}{7}+\dfrac{29}{32}+\dfrac{1}{4}+\dfrac{1}{7}+\dfrac{13}{32}=\left(\dfrac{3}{4}+\dfrac{1}{4}\right)+\left(\dfrac{6}{7}+\dfrac{1}{7}\right)+\left(\dfrac{29}{32}+\dfrac{13}{32}\right)=1+1+\dfrac{21}{16}=2+\dfrac{21}{16}=\dfrac{53}{16}\)
1. Phương pháp 1: ( Hình 1)
Nếu thì ba điểm A; B; C thẳng hàng.
2. Phương pháp 2: ( Hình 2)
Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.
(Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)
3. Phương pháp 3: ( Hình 3)
Nếu AB a ; AC A thì ba điểm A; B; C thẳng hàng.
( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng
a’ đi qua điểm O và vuông góc với đường thẳng a cho trước
- tiết 3 hình học 7)
Hoặc A; B; C cùng thuộc một đường trung trực của một
đoạn thẳng .(tiết 3- hình 7)
4. Phương pháp 4: ( Hình 4)
Nếu tia OA và tia OB là hai tia phân giác của góc xOy
thì ba điểm O; A; B thẳng hàng.
Cơ sở của phương pháp này là:
Mỗi góc có một và chỉ một tia phân giác .
* Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,
thì ba điểm O, A, B thẳng hàng.
5. Nếu K là trung điểm BD, K’ là giao điểm của BD và AC. Nếu K’
Là trung điểm BD thì K’ K thì A, K, C thẳng hàng.
(Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)
C. Các ví dụ minh họa cho tùng phương pháp:
Phương pháp 1
Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA
(tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm
D sao cho CD = AB.
Chứng minh ba điểm B, M, D thẳng hàng.
Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh
Do nên cần chứng minh
BÀI GIẢI:
AMB và CMD có:
AB = DC (gt).
MA = MC (M là trung điểm AC)
Do đó: AMB = CMD (c.g.c). Suy ra:
Mà (kề bù) nên .
Vậy ba điểm B; M; D thẳng hàng.
Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà AD = AB, trên tia đối
tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED
sao cho CM = EN.
Chứng minh ba điểm M; A; N thẳng hàng.
Gợi ý: Chứng minh từ đó suy ra ba điểm M; A; N thẳng hàng.
BÀI GIẢI (Sơ lược)
ABC = ADE (c.g.c)
ACM = AEN (c.g.c)
Mà (vì ba điểm E; A; C thẳng hàng) nên
Vậy ba điểm M; A; N thẳng hàng (đpcm)
BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1
Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối
của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và
CD.
Chứng minh ba điểm M, A, N thẳng hàng.
Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx BC (tia Cx và điểm A ở
phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia
BC lấy điểm F sao cho BF = BA.
Chứng minh ba điểm E, A, F thẳng hàng.
Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm
E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)
Gọi M là trung điểm HK.
Chứng minh ba điểm D, M, E thẳng hàng.
Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ
Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),
trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.
Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.
Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các
đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.
Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.
PHƯƠNG PHÁP 2
Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên
Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung
điểm BD và N là trung điểm EC.
Chứng minh ba điểm E, A, D thẳng hàng.
Hướng dẫn: Xử dụng phương pháp 2
Ta chứng minh AD // BC và AE // BC.
BÀI GIẢI.
BMC và DMA có:
MC = MA (do M là trung điểm AC)
(hai góc đối đỉnh)
MB = MD (do M là trung điểm BD)
Vậy: BMC = DMA (c.g.c)
Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)
Chứng minh tương tự : BC // AE (2)
Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)
và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng.
Ví dụ 2: Cho hai đoạn thẳng AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia
AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho
D là trung điểm AN.
a) Ta có: \(\dfrac{5}{8}+\dfrac{3}{17}+\dfrac{4}{18}+\dfrac{20}{-17}+\dfrac{-2}{9}+\dfrac{21}{56}\)
\(=\left(\dfrac{3}{17}-\dfrac{20}{17}\right)+\left(\dfrac{2}{9}-\dfrac{2}{9}\right)+\left(\dfrac{5}{8}+\dfrac{3}{8}\right)\)
\(=-1+1=0\)
b) Ta có: \(\left(\dfrac{9}{16}+\dfrac{8}{-27}\right)+\left(1+\dfrac{7}{16}+\dfrac{-19}{27}\right)\)
\(=\left(\dfrac{9}{16}+\dfrac{7}{16}\right)+\left(\dfrac{-8}{27}-\dfrac{19}{27}\right)+1\)
=1-1+1=1
a: =7+5/11-2-3/7-3-5/11
=2-3/7=11/7
b: =-3/5(5/7+3/7+6/7)
=-3/5*2=-6/5
c: =1/3(4/5+6/5)-4/3
=2/3-4/3=-2/3
d: =5/9(7/13+13-3/13)
=5/9*165/13=275/39
1)1/6 - - 5/6 = 1/6 + 5/6 = 1
2)6/13 - -14/39 = 6/13 + 14/39= 32/39
3)4/5 - 4/-18 = 4/5 + 4/18= 46/45
4)7/21 - 9/-36 = 7/21 + 9/36 = 7/12
5)-12/18 - -21/35 = -12/18 + 21/35 = -1/15
6)-3/21 - 6/42 = -2/7
7)-18/24 - 15/21 = -41/28
8)1/6 - 2/5 =-7/30