K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2018

2018 x 117 - 15 x 1009 x 2 + 2018 - 3 x 4036 : 2

= 2018 x 117 - 15 x 2018+ 2018 x 1 - 3 x 2018

= 2018 x ( 117 - 15 + 1 - 3 )

=2018 x 100

= 201800

20 tháng 3 2018

Cảm ơn

19 tháng 3 2018

201800

19 tháng 3 2018

=201800

Ta có: x=2017

nên x+1=2018

Ta có: \(P=x^{15}-2018x^{14}+2018x^{13}-2018x^{12}+...+2018x^3-2018x^2+2018x-2018\)

\(=x^{15}-\left(x+1\right)\cdot x^{14}+\left(x+1\right)\cdot x^{13}-\left(x+1\right)\cdot x^{12}+...+\left(x+1\right)\cdot x^3-\left(x+1\right)\cdot x^2+\left(x+1\right)\cdot x-\left(x+1\right)\)

\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}+...+x^3-x^3+x^2-x^2+x-x-1\)

=-1

8 tháng 3 2021

@ 肖战Daytoy_1005 giup

\(A=x^9-2018x^8+2018x^7-2018x^6+2016x^5-2018x^4+2018x^3-2018x^2+2018x-2018\)

\(A=x^9-\left(2017+1\right)x^8+\left(2017+1\right)x^7-...+\left(2017+1\right)x-\left(2017+1\right)\)

\(A=x^9-\left(x+1\right)x^8+\left(x+1\right)x^7-...+\left(x+1\right)x-x-1\)

\(A=x^9-x^9-x^8+x^8+x^7-...+x^2+x-x-1\)

\(A=-1\)

15 tháng 1 2018
nhanh ho mk nha
9 tháng 12 2019

THAY 2018 = xyz vào biểu thức 

      \(\frac{xyzx}{xy+xyzx+xyz}\)  +  \(\frac{y}{yz+y+xyz}\)+  \(\frac{z}{xz+z+1}\)

 =  \(\frac{xz}{1+xz+z}\)+  \(\frac{1}{z+1+xz}\)+  \(\frac{z}{xz+z+1}\)=  \(\frac{xz+z+1}{xz+z+1}\)=\(1\)

9 tháng 12 2019

Đặt \(A=\frac{2018x}{xy+2018x+2018}+\frac{y}{yzz+y+2018}+\frac{z}{xz+z+1}\)

Thay \(xyz=2018\)vào A ta được 

\(A=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)

   \(=\frac{x^2yz}{xy\left(1+xz+z\right)}+\frac{y}{y\left(z+1+xz\right)}+\frac{1}{xz+z+1}\)

  \(=\frac{xz}{xz+z+1}+\frac{1}{xz+z+1}+\frac{z}{xz+z+1}\)

  \(=\frac{xz+1+z}{xz+z+1}=1\)

23 tháng 3 2018

x+y+z hay là xyz hả bạn

24 tháng 3 2018

x*y*z =2018 nha

18 tháng 8 2020

thay xyz=2018 vào M ta có

\(M=\frac{xyz\cdot x}{xy+xyz\cdot x+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)

\(=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+x+1}\)

\(=\frac{x^2yz}{xy\left(1+xz+y\right)}+\frac{y}{y\left(z+1+xz\right)}+\frac{z}{xz+x+1}\)

\(=\frac{xz}{1+xz+y}+\frac{1}{z+1+xz}+\frac{z}{xz+1+xz}=\frac{xz+1+z}{z+1+xz}=1\)

Vậy M=1 với xyz=2018

18 tháng 8 2020

Em chỉ làm đại thôi ạ, có gì sai mong chị bảo vì năm nay em mới lên lớp 7 :vv

\(M=\frac{2018x}{xy+2018x+2018}+\frac{y}{yz+y+2018}+\frac{z}{xz+z+1}\)

\(=\frac{2018x}{xy+2018x+2018}+\frac{xy}{xyz+xy+2018x}+\frac{xyz}{xyxz+xyz+xy}\)

\(=\frac{2018x}{xy+2018x+2018}+\frac{xy}{2018+xy+2018x}+\frac{2018}{xy+2018+2018x}\)

\(=\frac{2018x+xy+2018}{xy+2018x+2018}=1\)

Vậy M = 1.