Cho \(a_n=1+2+...+n\)
a) Tính \(a_{n+1}\)
b) CMR \(a_n+a_{n+1}\)là một số chính phương.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a_n=1+2+3+...+n=\dfrac{n\left(n+1\right)}{2}\)
\(\Rightarrow a_{n+1}=1+2+3+...+n+\left(n+1\right)=\dfrac{\left(n+1\right)\left(n+2\right)}{2}\)
\(\Rightarrow a_n+a_{n+1}=\dfrac{n\left(n+1\right)}{2}+\dfrac{\left(n+1\right)\left(n+2\right)}{2}\)
\(=\dfrac{\left(n+1\right)}{2}.\left(n+n+2\right)=\dfrac{\left(n+1\right)}{2}.\left(2n+2\right)\)
\(=\dfrac{\left(n+1\right)}{2}.2\left(n+1\right)=\left(n+1\right)^2\)
\(\Rightarrow dpcm\)
Lời giải:
a) Công thức quen thuộc
\(a_n=1+2+3+...+n=\frac{n(n+1)}{2}\)
\(\Rightarrow a_n+1=\frac{n(n+1)}{2}+1\)
b) Ta có:
\(a_{n+1}=1+2+...+n+(n+1)=\frac{(n+1)(n+1+1)}{2}=\frac{(n+1)(n+2)}{2}\)
\(\Rightarrow a_n+a_{n+1}=\frac{n(n+1)}{2}+\frac{(n+1)(n+2)}{2}=\frac{(n+1)(n+n+2)}{2}=\frac{2(n+1)(n+1)}{2}=(n+1)^2\)
Vậy \(a_n+a_{n+1}\) là một số chính phương.
Lời giải:
Ta có công thức quen thuộc:
\(a_n=1+2+3+..+n=\frac{n(n+1)}{2}\)
\(a_{n+1}=1+2+3+...+n+(n+1)=\frac{(n+1)(n+2)}{2}\)
Do đó:
\(a_n+a_{n+1}=\frac{n(n+1)}{2}+\frac{(n+1)(n+2)}{2}=\frac{(n+1)(n+n+2)}{2}=(n+1)(n+1)=(n+1)^2\) là số chính phương với mọi số tự nhiên $n\geq 1$
Vậy $a_n+a_{n+1}$ là số chính phương.
a) \(a_n+1=\left(1+2+3+...+n\right)+1=\dfrac{n\left(n+1\right)}{2}+1\)
b) Ta có:
\(a_n+a_{n+1}=\dfrac{n\left(n+1\right)}{2}+\dfrac{\left(n+1\right)\left(n+2\right)}{2}=\dfrac{n\left(n+1\right)+\left(n+1\right)\left(n+2\right)}{2}=\dfrac{\left(n+1\right)\left(2n+2\right)}{2}=\left(n+1\right)^2\)
Vậy an + an + 1 là số chính phương
áp dụng t.c dãy tỉ số bằng nhau ta có:
\(\frac{a1}{a2}=\frac{a2}{a3}=\frac{a3}{a4}=.....=\frac{an}{an+1}=\frac{a1+a2+a3+....+an}{a2+a3+a4+...+an+1}\)
\(\frac{a1}{a2}\cdot\frac{a2}{a3}\cdot\frac{a3}{a4}\cdot...\cdot\frac{an}{an+1}=\frac{a1}{an+1}=\left(\frac{a1}{a2}\right)^n=\left(\frac{a1+a2+a3+....+an}{a2+a3+a4+...+an+1}\right)^n\)(vì từ 1 đến n có n chữ số)
=> đpcm
a,Ta có : an+1=1+2+....+n+(n+1)
\(\Rightarrow a_{n+1}=\frac{\left(n+2\right)\left[n:1+1\right]}{2}=\frac{\left(n+2\right)\left(n+1\right)}{2}\)
b,Ta lại có :\(\Rightarrow a=\frac{\left(n+1\right)\left[\left(n-1\right):1+1\right]}{2}=\frac{\left(n+1\right)\left(n\right)}{2}\)
\(\Rightarrow a_n+a_{n+1}=\frac{\left(n+2\right)\left(n+1\right)}{2}+\frac{\left(n+1\right)n}{2}\)
\(\Rightarrow a_n+a_{n+1}=\frac{\left(n+1\right)\left[\left(n+2\right)+n\right]}{2}=\frac{\left(n+1\right)\left(2n+2\right)}{2}\)
\(\Rightarrow a_n+a_{n+1}=\left(n+1\right)^2\)
=>ĐPCM