Chứng minh góc ngoài của tam giác bằng 2 góc trong không kề
giúp mình nhé >_<
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử hai tia phân giác của các góc ngoài tại đỉnh B và C của tam giác ABC cắt nhau tại O. Ta sẽ chứng minh AO là tia phân giác của góc A.
Kẻ các đường vuông góc OH, OI, OK từ O lần lượt đến các đường thẳng AB, BC, AC.
Vì BO là tia phân giác của góc HBC nên OH = OI (1)
Vì CO là tia phân giác của góc KCB nên OI = OK (2)
Từ (1) và (2) suy ra OI = OH = OK
(3)
Suy ra: O thuộc đường phân giác của góc BAC.
Suy ra AO là tia phân giác của góc BAC và ta có điều phải chứng minh.
a)ta có: góc EAC = góc DAB ( = 90 độ)
=> góc EAC + góc BAC = góc DAB + góc BAC
=> góc EAB = góc DAC
Xét tam giác EAB và tam giác CAD
có: EA = CA ( gt)
góc EAB = góc CAD ( cmt)
AB = AD ( gt)
\(\Rightarrow\Delta EAB=\Delta CAD\left(c-g-c\right)\)
=> EB = CD ( 2 cạnh tương ứng)
( Gọi giao điểm của EB và CD là O; giao điểm của CD và AB là H)
ta có: \(\Delta EAB=\Delta CAD\left(cmt\right)\)
=> góc EBA = góc CDA ( 2 góc tương ứng)
Xét tam giác ADH vuông tại A
có: góc CDA + góc AHD = 90 độ ( 2 góc phụ nhau)
mà góc EBA = góc CDA ( cmt)
góc AHD = góc OHB ( đối đỉnh)
=> góc CDA + góc AHD = góc EBA + góc OHB = 90 độ
=> góc EBA + góc OHB = 90 độ
mà góc EBA, góc OHB là 2 góc phụ nhau
\(\Rightarrow DC\perp BE⋮O\) ( định lí)
b) Xét tam giác EMN và tam giác DAN
có: MN = AN ( gt)
góc ENM = góc DNA ( đối đỉnh)
EN = DN (gt)
\(\Rightarrow\Delta EMN=\Delta DAN\left(c-g-c\right)\)
=> EM = DA ( 2 cạnh tương ứng)
mà DA = AB
=> EM = AB ( = DA)
...
xl bn nha, nhưng mk chỉ bk chứng minh đến đây thoy!
a) Ta có: góc DAC= góc DAB + góc BAC
góc BAE= góc EAC+ góc CAB
Mà góc DAB= góc EAC=90 độ
=> góc DAC= góc BAE
Xét tam giác DAC và tam giác BAE có:
AD=AB
góc DAC= góc BAE
AC=AE
=> tam giác DAC= tam giác BAE ( c.g.c)
=> DC=BE
Gọi I và H lần lượt là giao điểm của DC với AB và BE
Ta có: góc D+ góc DAH+ góc DHA= góc B+ góc BHI+ góc BIH= 180 độ
Mà góc D= góc B ( tam giác DAC= tam giác BAE) va góc DHA = góc BHI ( hai góc đôi đỉnh)
=> góc DAH= góc BIH
Mà góc DAH=90 độ=> góc BIH=90 độ=> DC vuông góc vs BE
b,
Xét tam giác ADN và tam giác MEN có:
DN=NE (gt)
góc N1= góc N2 ( đ đ )
AN=MN ( gt)
Suy ra tam giác ADN = tam giác MEN (c.g.c)
Suy ra DA=ME Mà DA = AB ( gt) suy ra ME=AB
Ta có;góc DAB + góc EAC = 180 độ
Suy ra Góc A1 + góc A2 =180 độ ( 1 )
Mặt khác tam giác ADN = tam giác MEN suy ra góc E1 = góc D1
Suy ra ME song song vs AD ( 2 góc SLT)
Suy ra góc MEA + góc A2 =180 độ ( TCP ) ( 2 )
Từ 1 và 2 suy ra góc MEA = góc A1
và ME = AB (gt) ; AE = AC (cmt)
Suy ra Tam giác AME = Tam giác CBA ( c.g.c)
1.Khẳng định nào sau đây không đúng:
A. Góc ngoài của tam giác bằng tổng hai góc trong không kề với nó
B. Trong tam giác cân hai góc ở đáy bằng nhau
C. Tam giác có hai góc bằng nhau là tam giác đều
2.Tam giác nào là tam giác vuông với số đo 3 cạnh như sau:
A. 13m; 14m; 15m B. 11m; 12m; 10m
C. 12m; 9m; 15m D. 8m; 8m; 10m
D. Trong tam giác đều mỗi góc bằng 60 độ
vẽ tam giác ABC. gọi ABE là góc ngoài của \(\Delta ABC\)(vẽ góc ABE kề bù vs góc B)
ta có: ABE+B=1800(kề bù)
mà A+C+B=1800(tổng 3 góc trong tam giác)
=> ABE=A+C
=> góc ngoài của tam giác = tổng 2 góc trong ko kề với nó
Ta có
góc ngoài của tam giác = 180 độ - góc trong kề
2 góc trong không kề = 180 độ - góc trong kề với góc ngoài
nên góc ngoài của tam giác = 2 góc trong không kề